BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 10751665)

  • 1. Gap junction systems in the mammalian cochlea.
    Kikuchi T; Kimura RS; Paul DL; Takasaka T; Adams JC
    Brain Res Brain Res Rev; 2000 Apr; 32(1):163-6. PubMed ID: 10751665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in hereditary nonsyndromic deafness.
    Kikuchi T; Adams JC; Miyabe Y; So E; Kobayashi T
    Med Electron Microsc; 2000; 33(2):51-6. PubMed ID: 11810458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis.
    Kikuchi T; Kimura RS; Paul DL; Adams JC
    Anat Embryol (Berl); 1995 Feb; 191(2):101-18. PubMed ID: 7726389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gap junctions and connexin expression in the inner ear.
    Forge A; Becker D; Casalotti S; Edwards J; Evans WH; Lench N; Souter M
    Novartis Found Symp; 1999; 219():134-50; discussion 151-6. PubMed ID: 10207902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of the gap-junction connexins 26 and 30 in the rat cochlea.
    Lautermann J; ten Cate WJ; Altenhoff P; Grümmer R; Traub O; Frank H; Jahnke K; Winterhager E
    Cell Tissue Res; 1998 Dec; 294(3):415-20. PubMed ID: 9799458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression pattern of Connexin 26 and Connexin 30 in mature cochlea of the monkey.
    Wu X; Tang W; Muly EC; Zhang L; Lin X
    Biochem Biophys Res Commun; 2019 Oct; 518(2):357-361. PubMed ID: 31421828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gap junctions and cochlear homeostasis.
    Zhao HB; Kikuchi T; Ngezahayo A; White TW
    J Membr Biol; 2006; 209(2-3):177-86. PubMed ID: 16773501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of connexin 26 and Na,K-ATPase in the developing mouse cochlear lateral wall: functional implications.
    Xia A; Kikuchi T; Hozawa K; Katori Y; Takasaka T
    Brain Res; 1999 Oct; 846(1):106-11. PubMed ID: 10536217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency.
    Spicer SS; Schulte BA
    Hear Res; 1996 Oct; 100(1-2):80-100. PubMed ID: 8922982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Intervention of spiral ligament fibrocytes in the metabolic regulation of the inner ear].
    García Berrocal JR; Méndez-Benegassi I; Martí C; Ramírez Camacho R
    Acta Otorrinolaringol Esp; 2008 Dec; 59(10):494-9. PubMed ID: 19080786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gap junctions in the inner ear: comparison of distribution patterns in different vertebrates and assessement of connexin composition in mammals.
    Forge A; Becker D; Casalotti S; Edwards J; Marziano N; Nevill G
    J Comp Neurol; 2003 Dec; 467(2):207-31. PubMed ID: 14595769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of the stria vascularis and potassium regulation in the human fetal cochlea: Insights into hereditary sensorineural hearing loss.
    Locher H; de Groot JC; van Iperen L; Huisman MA; Frijns JH; Chuva de Sousa Lopes SM
    Dev Neurobiol; 2015 Nov; 75(11):1219-40. PubMed ID: 25663387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deficiency of transcription factor Brn4 disrupts cochlear gap junction plaques in a model of DFN3 non-syndromic deafness.
    Kidokoro Y; Karasawa K; Minowa O; Sugitani Y; Noda T; Ikeda K; Kamiya K
    PLoS One; 2014; 9(9):e108216. PubMed ID: 25259580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Membrane Properties of Cochlear Root Cells are Consistent with Roles in Potassium Recirculation and Spatial Buffering.
    Jagger DJ; Nevill G; Forge A
    J Assoc Res Otolaryngol; 2010 Sep; 11(3):435-48. PubMed ID: 20393778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Connexins, hearing and deafness: clinical aspects of mutations in the connexin 26 gene.
    Lefebvre PP; Van De Water TR
    Brain Res Brain Res Rev; 2000 Apr; 32(1):159-62. PubMed ID: 10928803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Roles of gap junctions in glucose transport from glucose transporter 1-positive to -negative cells in the lateral wall of the rat cochlea.
    Suzuki T; Matsunami T; Hisa Y; Takata K; Takamatsu T; Oyamada M
    Histochem Cell Biol; 2009 Jan; 131(1):89-102. PubMed ID: 18787834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression profiles of the connexin genes, Gjb1 and Gjb3, in the developing mouse cochlea.
    López-Bigas N; Arbonés ML; Estivill X; Simonneau L
    Mech Dev; 2002 Dec; 119 Suppl 1():S111-5. PubMed ID: 14516671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal loss of K+ transport proteins in the developing cochlear lateral wall of guinea pigs with hereditary deafness.
    Jin Z; Ulfendahl M; Järlebark L
    Eur J Neurosci; 2008 Jan; 27(1):145-54. PubMed ID: 18093167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of pannexin expression in the mammalian cochlea.
    Wang XH; Streeter M; Liu YP; Zhao HB
    J Comp Neurol; 2009 Jan; 512(3):336-46. PubMed ID: 19009624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connexin 26 Immunohistochemistry in Temporal Bones With Cochlear Otosclerosis.
    Miller ME; Lopez IA; Linthicum FH; Ishiyama A
    Ann Otol Rhinol Laryngol; 2018 Aug; 127(8):536-542. PubMed ID: 29911391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.