These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 10751696)

  • 21. Properties of MSW fly ash-calcium sulfoaluminate cement matrix and stabilization/solidification on heavy metals.
    Qian GR; Shi J; Cao YL; Xu YF; Chui PC
    J Hazard Mater; 2008 Mar; 152(1):196-203. PubMed ID: 17728061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Immobilization of MSWI fly ash through geopolymerization: effects of water-wash.
    Zheng L; Wang C; Wang W; Shi Y; Gao X
    Waste Manag; 2011 Feb; 31(2):311-7. PubMed ID: 20609574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pozzolanic reactivity of the synthetic slag from municipal solid waste incinerator cyclone ash and scrubber ash.
    Lin KL; Lin DF
    J Air Waste Manag Assoc; 2006 May; 56(5):569-74. PubMed ID: 16739792
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Geopolymers for immobilization of Cr(6+), Cd(2+), and Pb(2+).
    Zhang J; Provis JL; Feng D; van Deventer JS
    J Hazard Mater; 2008 Sep; 157(2-3):587-98. PubMed ID: 18313213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stabilization of lead in an alkali-activated municipal solid waste incineration fly ash-Pyrophyllite-based system.
    Shiota K; Nakamura T; Takaoka M; Aminuddin SF; Oshita K; Fujimori T
    J Environ Manage; 2017 Oct; 201():327-334. PubMed ID: 28688320
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Alkali activation of recovered fuel-biofuel fly ash from fluidised-bed combustion: Stabilisation/solidification of heavy metals.
    Yliniemi J; Pesonen J; Tiainen M; Illikainen M
    Waste Manag; 2015 Sep; 43():273-82. PubMed ID: 26054963
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heavy metal stabilization by means of innovative alumino-silicate matrix.
    Cioffi R; Pagliuca C; Santoro L; Verdolotti L
    Environ Technol; 2003 May; 24(5):641-51. PubMed ID: 12803256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Leaching behavior of aluminum, copper, iron and zinc from cement activated fly ash and slag stabilized soils.
    Mahedi M; Cetin B; Dayioglu AY
    Waste Manag; 2019 Jul; 95():334-355. PubMed ID: 31351620
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation on the application of steel slag-fly ash-phosphogypsum solidified material as road base material.
    Shen W; Zhou M; Ma W; Hu J; Cai Z
    J Hazard Mater; 2009 May; 164(1):99-104. PubMed ID: 18801617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of Pb-slag, MSWI bottom ash and boiler and fly ash for using as a fine aggregate in cement mortar.
    Saikia N; Cornelis G; Mertens G; Elsen J; Van Balen K; Van Gerven T; Vandecasteele C
    J Hazard Mater; 2008 Jun; 154(1-3):766-77. PubMed ID: 18068299
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers.
    Luna Galiano Y; Fernández Pereira C; Vale J
    J Hazard Mater; 2011 Jan; 185(1):373-81. PubMed ID: 20943314
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The hydration characteristics and utilization of slag obtained by the vitrification of MSWI fly ash.
    Lin KL; Wang KS; Tzeng BY; Lin CY
    Waste Manag; 2004; 24(2):199-205. PubMed ID: 14761759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potential application of coal-fuel oil ash for the manufacture of building materials.
    Cioffi R; Marroccoli M; Sansone L; Santoro L
    J Hazard Mater; 2005 Sep; 124(1-3):101-6. PubMed ID: 15985327
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis and heavy metal immobilization behaviors of slag based geopolymer.
    Yunsheng Z; Wei S; Qianli C; Lin C
    J Hazard Mater; 2007 May; 143(1-2):206-13. PubMed ID: 17034943
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stabilization of Cr-rich tannery waste in fly ash matrices.
    Daniil A; Dimitrakopulos GP; Varitis S; Vourlias G; Kaimakamis G; Pantazopoulou E; Pavlidou E; Zouboulis AI; Karakostas T; Komninou P
    Waste Manag Res; 2018 Sep; 36(9):818-826. PubMed ID: 29852818
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Solidification/Stabilization of Wastewater (From a Landfill Leachate) in Specially Designed Binders Based on Coal Ash.
    Oproiu CL; Voicu G; Bădănoiu A; Nicoară AI
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640021
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Utilization of Alkali-Activated Lead-Zinc Smelting Slag for Chromite Ore Processing Residue Solidification/Stabilization.
    Yu L; Fang L; Zhang P; Zhao S; Jiao B; Li D
    Int J Environ Res Public Health; 2021 Sep; 18(19):. PubMed ID: 34639258
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hydration characteristics and environmental friendly performance of a cementitious material composed of calcium silicate slag.
    Zhang N; Li H; Zhao Y; Liu X
    J Hazard Mater; 2016 Apr; 306():67-76. PubMed ID: 26691955
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solidification/stabilization of chromite ore processing residue using alkali-activated composite cementitious materials.
    Huang X; Zhuang R; Muhammad F; Yu L; Shiau Y; Li D
    Chemosphere; 2017 Feb; 168():300-308. PubMed ID: 27810528
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Alkali borosilicate glass by fly ash from a coal-fired power plant.
    Park JS; Taniguchi S; Park YJ
    Chemosphere; 2009 Jan; 74(2):320-4. PubMed ID: 18951607
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.