These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 10752508)

  • 1. Systemic adverse effect of antithyroid drugs.
    Molnár I
    Clin Rheumatol; 2000; 19(1):78. PubMed ID: 10752508
    [No Abstract]   [Full Text] [Related]  

  • 2. Antithyroid effects of propylthiouracil and sulfamonomethoxine in rats and monkeys.
    Takayama S; Aihara K; Onodera T; Akimoto T
    Toxicol Appl Pharmacol; 1986 Feb; 82(2):191-9. PubMed ID: 2418534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serum pattern of thyroxine (T4) and triiodothyronine (T3) after treatment of thyrotoxicosis with antithyroid drugs.
    Bellabarba D; Tremblay R
    Int J Clin Pharmacol; 1972 Apr; 6(1):18-21. PubMed ID: 4114923
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of the antioxidant TK 12627 (Irganox) on monodeiodination and on the levels of messenger ribonucleic acid of 5'-deiodinase type I and spot 14.
    Liang H; Morin O; Burger AG
    Acta Endocrinol (Copenh); 1993 May; 128(5):451-8. PubMed ID: 8317193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antithyroid drugs.
    Cooper DS
    N Engl J Med; 2005 Mar; 352(9):905-17. PubMed ID: 15745981
    [No Abstract]   [Full Text] [Related]  

  • 6. Piperine lowers the serum concentrations of thyroid hormones, glucose and hepatic 5'D activity in adult male mice.
    Panda S; Kar A
    Horm Metab Res; 2003 Sep; 35(9):523-6. PubMed ID: 14517767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thyroid over-expression of type 1 and type 2 deiodinase may account for the syndrome of low thyroxine and increasing triiodothyronine during propylthiouracil treatment.
    Weetman AP; Shepherdley CA; Mansell P; Ubhi CS; Visser TJ
    Eur J Endocrinol; 2003 Nov; 149(5):443-7. PubMed ID: 14585092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Thyrostatic treatment and its adverse effects].
    Dokupilová A; Payer J
    Vnitr Lek; 2013 Nov; 59(11):989-95. PubMed ID: 24279443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chavibetol corrects thyrotoxicosis through alterations in thyroid peroxidase.
    Panda S; Sharma R; Kar A
    Naunyn Schmiedebergs Arch Pharmacol; 2019 May; 392(5):541-550. PubMed ID: 30610248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maternal transfer of methimazole and effects on thyroid hormone availability in embryonic tissues.
    Van Herck SL; Geysens S; Bald E; Chwatko G; Delezie E; Dianati E; Ahmed RG; Darras VM
    J Endocrinol; 2013 Jul; 218(1):105-15. PubMed ID: 23608220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The antithyroid arthritis syndrome reviewed.
    Shabtai R; Shapiro MS; Orenstein D; Taragan R; Shenkman L
    Arthritis Rheum; 1984 Feb; 27(2):227-9. PubMed ID: 6199031
    [No Abstract]   [Full Text] [Related]  

  • 12. Neurodevelopment and Thyroid Hormone Synthesis Inhibition in the Rat: Quantitative Understanding Within the Adverse Outcome Pathway Framework.
    Hassan I; El-Masri H; Kosian PA; Ford J; Degitz SJ; Gilbert ME
    Toxicol Sci; 2017 Nov; 160(1):57-73. PubMed ID: 28973696
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating Margin of Exposure to Thyroid Peroxidase Inhibitors Using High-Throughput in vitro Data, High-Throughput Exposure Modeling, and Physiologically Based Pharmacokinetic/Pharmacodynamic Modeling.
    Leonard JA; Tan YM; Gilbert M; Isaacs K; El-Masri H
    Toxicol Sci; 2016 May; 151(1):57-70. PubMed ID: 26865668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive intermediates of xenobiotics in thyroid: formation and biological consequences.
    Andrae U
    Adv Exp Med Biol; 1996; 387():213-9. PubMed ID: 8794215
    [No Abstract]   [Full Text] [Related]  

  • 15. Molecular characterization of thyroid toxicity: anchoring gene expression profiles to biochemical and pathologic end points.
    Glatt CM; Ouyang M; Welsh W; Green JW; Connor JO; Frame SR; Everds NE; Poindexter G; Snajdr S; Delker DA
    Environ Health Perspect; 2005 Oct; 113(10):1354-61. PubMed ID: 16203246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new class of propylthiouracil analogs: comparison of 5'-deiodinase inhibition and antithyroid activity.
    Nogimori T; Braverman LE; Taurog A; Fang SL; Wright G; Emerson CH
    Endocrinology; 1986 Apr; 118(4):1598-605. PubMed ID: 3948793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Triiodothyronine and thyroxine in hyperthyroidism. Comparison of the acute changes during therapy with antithyroid agents.
    Abuid J; Larsen PR
    J Clin Invest; 1974 Jul; 54(1):201-8. PubMed ID: 4134836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preferential inhibition of thyroxine and 3,5,3'-triiodothyronine formation by propylthiouracil and methylmercaptoimidazole in thyroid peroxidase-catalyzed iodination of thyroglobulin.
    Engler H; Taurog A; Dorris ML
    Endocrinology; 1982 Jan; 110(1):190-7. PubMed ID: 7053983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of testosterone in ameliorating the cadmium induced inhibition of thyroid function in adult male mouse.
    Gupta P; Kar A
    Bull Environ Contam Toxicol; 1997 Mar; 58(3):422-8. PubMed ID: 9008052
    [No Abstract]   [Full Text] [Related]  

  • 20. Lead induced thyroid dysfunction and lipid peroxidation in the fish Clarias batrachus with special reference to hepatic type I-5'-monodeiodinase activity.
    Chaurasia SS; Gupta P; Kar A; Maiti PK
    Bull Environ Contam Toxicol; 1996 Apr; 56(4):649-54. PubMed ID: 8645925
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.