BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 10752613)

  • 1. Analysis of the dynamic properties of Bacillus circulans xylanase upon formation of a covalent glycosyl-enzyme intermediate.
    Connelly GP; Withers SG; McIntosh LP
    Protein Sci; 2000 Mar; 9(3):512-24. PubMed ID: 10752613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase.
    Joshi MD; Sidhu G; Pot I; Brayer GD; Withers SG; McIntosh LP
    J Mol Biol; 2000 May; 299(1):255-79. PubMed ID: 10860737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR spectroscopic characterization of a beta-(1,4)-glycosidase along its reaction pathway: stabilization upon formation of the glycosyl-enzyme intermediate.
    Poon DK; Ludwiczek ML; Schubert M; Kwan EM; Withers SG; McIntosh LP
    Biochemistry; 2007 Feb; 46(7):1759-70. PubMed ID: 17253772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The pKa of the general acid/base carboxyl group of a glycosidase cycles during catalysis: a 13C-NMR study of bacillus circulans xylanase.
    McIntosh LP; Hand G; Johnson PE; Joshi MD; Körner M; Plesniak LA; Ziser L; Wakarchuk WW; Withers SG
    Biochemistry; 1996 Aug; 35(31):9958-66. PubMed ID: 8756457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sugar ring distortion in the glycosyl-enzyme intermediate of a family G/11 xylanase.
    Sidhu G; Withers SG; Nguyen NT; McIntosh LP; Ziser L; Brayer GD
    Biochemistry; 1999 Apr; 38(17):5346-54. PubMed ID: 10220321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of a buried neutral histidine residue in Bacillus circulans xylanase: NMR assignments, pH titration, and hydrogen exchange.
    Plesniak LA; Connelly GP; Wakarchuk WW; McIntosh LP
    Protein Sci; 1996 Nov; 5(11):2319-28. PubMed ID: 8931150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a buried neutral histidine in Bacillus circulans xylanase: internal dynamics and interaction with a bound water molecule.
    Connelly GP; McIntosh LP
    Biochemistry; 1998 Feb; 37(7):1810-8. PubMed ID: 9485306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete measurement of the pKa values of the carboxyl and imidazole groups in Bacillus circulans xylanase.
    Joshi MD; Hedberg A; McIntosh LP
    Protein Sci; 1997 Dec; 6(12):2667-70. PubMed ID: 9416621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase.
    Joshi MD; Sidhu G; Nielsen JE; Brayer GD; Withers SG; McIntosh LP
    Biochemistry; 2001 Aug; 40(34):10115-39. PubMed ID: 11513590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary structure and NMR assignments of Bacillus circulans xylanase.
    Plesniak LA; Wakarchuk WW; McIntosh LP
    Protein Sci; 1996 Jun; 5(6):1118-35. PubMed ID: 8762143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recruitment of both uniform and differential binding energy in enzymatic catalysis: xylanases from families 10 and 11.
    Wicki J; Schloegl J; Tarling CA; Withers SG
    Biochemistry; 2007 Jun; 46(23):6996-7005. PubMed ID: 17503782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pre-steady state kinetic analysis of an enzymatic reaction monitored by time-resolved electrospray ionization mass spectrometry.
    Zechel DL; Konermann L; Withers SG; Douglas DJ
    Biochemistry; 1998 May; 37(21):7664-9. PubMed ID: 9601025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Backbone dynamics of TEM-1 determined by NMR: evidence for a highly ordered protein.
    Savard PY; Gagné SM
    Biochemistry; 2006 Sep; 45(38):11414-24. PubMed ID: 16981701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Backbone dynamics of an oncogenic mutant of Cdc42Hs shows increased flexibility at the nucleotide-binding site.
    Adams PD; Loh AP; Oswald RE
    Biochemistry; 2004 Aug; 43(31):9968-77. PubMed ID: 15287724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel view of domain flexibility in E. coli adenylate kinase based on structural mode-coupling (15)N NMR relaxation.
    Tugarinov V; Shapiro YE; Liang Z; Freed JH; Meirovitch E
    J Mol Biol; 2002 Jan; 315(2):155-70. PubMed ID: 11779236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and dynamics of the potato carboxypeptidase inhibitor by 1H and 15N NMR.
    González C; Neira JL; Ventura S; Bronsoms S; Rico M; Avilés FX
    Proteins; 2003 Feb; 50(3):410-22. PubMed ID: 12557184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical solution to the Lipari-Szabo model based on the reduced spectral density approximation offers a novel protocol for extracting motional parameters.
    Renner C; Moroder L; Holak TA
    J Magn Reson; 2001 Jul; 151(1):32-9. PubMed ID: 11444934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strategies for modulating the pH-dependent activity of a family 11 glycoside hydrolase.
    Ludwiczek ML; D'Angelo I; Yalloway GN; Brockerman JA; Okon M; Nielsen JE; Strynadka NC; Withers SG; McIntosh LP
    Biochemistry; 2013 May; 52(18):3138-56. PubMed ID: 23578322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Backbone dynamics of oxidised and reduced forms of human atrial natriuretic peptide.
    Peto H; Stott K; Sunde M; Broadhurst RW
    J Struct Biol; 2004 Nov; 148(2):214-25. PubMed ID: 15477101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The slow folding reaction of barstar: the core tryptophan region attains tight packing before substantial secondary and tertiary structure formation and final compaction of the polypeptide chain.
    Sridevi K; Juneja J; Bhuyan AK; Krishnamoorthy G; Udgaonkar JB
    J Mol Biol; 2000 Sep; 302(2):479-95. PubMed ID: 10970747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.