BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 10753443)

  • 1. NADH-Regulated metabolic model for growth of Methylosinus trichosporiumOB3b. Cometabolic degradation of trichloroethene and optimization of bioreactor system performance.
    Sipkema EM; de Koning W; Ganzeveld KJ; Janssen DB; Beenackers AA
    Biotechnol Prog; 2000; 16(2):189-98. PubMed ID: 10753443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and mathematical modeling of a two-stage reactor system for trichloroethylene degradation using Methylosinus trichosporium OB3b.
    Hwang JW; Choi YB; Park S; Choi CY; Lee EY
    Biodegradation; 2007 Feb; 18(1):91-101. PubMed ID: 16467965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetics and modeling of reductive dechlorination at high PCE and TCE concentrations.
    Yu S; Semprini L
    Biotechnol Bioeng; 2004 Nov; 88(4):451-64. PubMed ID: 15384053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NADH-Regulated metabolic model for growth of Methylosinus trichosporium OB3b. Model presentation, parameter estimation, and model validation.
    Sipkema EM; de Koning W; Ganzeveld KJ; Janssen DB; Beenackers AA
    Biotechnol Prog; 2000; 16(2):176-88. PubMed ID: 10753442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methanol suppression of trichloroethylene degradation by Methylosinus trichosporium (OB3b) and methane-oxidizing mixed cultures.
    Eng W; Palumbo AV; Sriharan S; Strandberg GW
    Appl Biochem Biotechnol; 1991; 28-29():887-99. PubMed ID: 1929390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trichloroethene degradation in a two-step system by methylosinus trichosporium OB3b. Optimization of system performance: use of formate and methane.
    Sipkema EM; de Koning W; Van Hylckama Vlieg JE; Ganzeveld KJ; Janssen DB; Beenackers AA
    Biotechnol Bioeng; 1999 Apr; 63(1):56-68. PubMed ID: 10099581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methanotrophs, Methylosinus trichosporium OB3b, sMMO, and their application to bioremediation.
    Sullivan JP; Dickinson D; Chase HA
    Crit Rev Microbiol; 1998; 24(4):335-73. PubMed ID: 9887367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida.
    Chen YM; Lin TF; Huang C; Lin JC
    Chemosphere; 2008 Aug; 72(11):1671-80. PubMed ID: 18586301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida.
    Chen YM; Lin TF; Huang C; Lin JC; Hsieh FM
    J Hazard Mater; 2007 Sep; 148(3):660-70. PubMed ID: 17434262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of soluble methane monooxygenase during growth of Methylosinus trichosporium on methanol.
    Yu Y; Ramsay JA; Ramsay BA
    J Biotechnol; 2009 Jan; 139(1):78-83. PubMed ID: 18955091
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological removal of the xenobiotic trichloroethylene (TCE) through cometabolism in nitrifying systems.
    Kocamemi BA; Ceçen F
    Bioresour Technol; 2010 Jan; 101(1):430-3. PubMed ID: 19729301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement and modeling of multiple substrate oxidation by methanotrophs at 20 degrees C.
    Yoon S; Semrau JD
    FEMS Microbiol Lett; 2008 Oct; 287(2):156-62. PubMed ID: 18771422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stoichiometry and kinetics of the PHB-producing Type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP.
    Rostkowski KH; Pfluger AR; Criddle CS
    Bioresour Technol; 2013 Mar; 132():71-7. PubMed ID: 23395757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dechlorination kinetics of TCE at toxic TCE concentrations: Assessment of different models.
    Haest PJ; Springael D; Smolders E
    Water Res; 2010 Jan; 44(1):331-9. PubMed ID: 19818985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate.
    Landa AS; Sipkema EM; Weijma J; Beenackers AA; Dolfing J; Janssen DB
    Appl Environ Microbiol; 1994 Sep; 60(9):3368-74. PubMed ID: 7524444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hollow-fiber membrane bioreactor for the removal of trichloroethylene from the vapor phase.
    Pressman JG; Georgiou G; Speitel GE
    Biotechnol Bioeng; 2000 Jun; 68(5):548-56. PubMed ID: 10797241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of chlorinated hydrocarbon degradation by Methylosinus trichosporium OB3b and toxicity of trichloroethylene.
    Oldenhuis R; Oedzes JY; van der Waarde JJ; Janssen DB
    Appl Environ Microbiol; 1991 Jan; 57(1):7-14. PubMed ID: 2036023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mixed pollutant degradation by Methylosinus trichosporium OB3b expressing either soluble or particulate methane monooxygenase: can the tortoise beat the hare?
    Lee SW; Keeney DR; Lim DH; Dispirito AA; Semrau JD
    Appl Environ Microbiol; 2006 Dec; 72(12):7503-9. PubMed ID: 17012599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trichloroethylene (TCE) removal in a single pulse suspension bioreactor.
    Volcík V; Hoffmann J; Růzicka J; Sergejevová M
    J Environ Manage; 2005 Mar; 74(4):293-304. PubMed ID: 15737454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.