These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
53 related articles for article (PubMed ID: 10753661)
1. Mutation of the toxin binding site of PP-1c: comparison with PP-2B. Dawson JF; Luu HA; Bagu JR; Holmes CF Biochem Biophys Res Commun; 2000 Apr; 270(2):543-9. PubMed ID: 10753661 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure and mutagenesis of a protein phosphatase-1:calcineurin hybrid elucidate the role of the beta12-beta13 loop in inhibitor binding. Maynes JT; Perreault KR; Cherney MM; Luu HA; James MN; Holmes CF J Biol Chem; 2004 Oct; 279(41):43198-206. PubMed ID: 15280359 [TBL] [Abstract][Full Text] [Related]
3. A molecular basis for different interactions of marine toxins with protein phosphatase-1. Molecular models for bound motuporin, microcystins, okadaic acid, and calyculin A. Bagu JR; Sykes BD; Craig MM; Holmes CF J Biol Chem; 1997 Feb; 272(8):5087-97. PubMed ID: 9030574 [TBL] [Abstract][Full Text] [Related]
4. Molecular mechanisms underlying he interaction of motuporin and microcystins with type-1 and type-2A protein phosphatases. Craig M; Luu HA; McCready TL; Williams D; Andersen RJ; Holmes CF Biochem Cell Biol; 1996; 74(4):569-78. PubMed ID: 8960363 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional structure of the catalytic subunit of protein serine/threonine phosphatase-1. Goldberg J; Huang HB; Kwon YG; Greengard P; Nairn AC; Kuriyan J Nature; 1995 Aug; 376(6543):745-53. PubMed ID: 7651533 [TBL] [Abstract][Full Text] [Related]
6. Structure-based thermodynamic analysis of the dissociation of protein phosphatase-1 catalytic subunit and microcystin-LR docked complexes. Lavigne P; Bagu JR; Boyko R; Willard L; Holmes CF; Sykes BD Protein Sci; 2000 Feb; 9(2):252-64. PubMed ID: 10716177 [TBL] [Abstract][Full Text] [Related]
7. Molecular enzymology underlying regulation of protein phosphatase-1 by natural toxins. Holmes CF; Maynes JT; Perreault KR; Dawson JF; James MN Curr Med Chem; 2002 Nov; 9(22):1981-9. PubMed ID: 12369866 [TBL] [Abstract][Full Text] [Related]
8. The nonconserved N-terminus of protein phosphatase 2B confers its properties to protein phosphatase 1. Xie XJ; Huang W; Xue CZ; Wei Q IUBMB Life; 2009 Feb; 61(2):178-83. PubMed ID: 18925649 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the interaction between DARPP-32 and protein phosphatase 1 (PP-1): DARPP-32 peptides antagonize the interaction of PP-1 with binding proteins. Kwon YG; Huang HB; Desdouits F; Girault JA; Greengard P; Nairn AC Proc Natl Acad Sci U S A; 1997 Apr; 94(8):3536-41. PubMed ID: 9108011 [TBL] [Abstract][Full Text] [Related]
10. Overlapping binding sites in protein phosphatase 2A for association with regulatory A and alpha-4 (mTap42) subunits. Prickett TD; Brautigan DL J Biol Chem; 2004 Sep; 279(37):38912-20. PubMed ID: 15252037 [TBL] [Abstract][Full Text] [Related]
11. Molecular mechanisms underlying the interaction of protein phosphatase-1c with ASPP proteins. Skene-Arnold TD; Luu HA; Uhrig RG; De Wever V; Nimick M; Maynes J; Fong A; James MN; Trinkle-Mulcahy L; Moorhead GB; Holmes CF Biochem J; 2013 Feb; 449(3):649-59. PubMed ID: 23088536 [TBL] [Abstract][Full Text] [Related]
12. Crystal structures of protein phosphatase-1 bound to motuporin and dihydromicrocystin-LA: elucidation of the mechanism of enzyme inhibition by cyanobacterial toxins. Maynes JT; Luu HA; Cherney MM; Andersen RJ; Williams D; Holmes CF; James MN J Mol Biol; 2006 Feb; 356(1):111-20. PubMed ID: 16343532 [TBL] [Abstract][Full Text] [Related]
13. Spatial constraints on the recognition of phosphoproteins by the tandem SH2 domains of the phosphatase SH-PTP2. Eck MJ; Pluskey S; Trüb T; Harrison SC; Shoelson SE Nature; 1996 Jan; 379(6562):277-80. PubMed ID: 8538796 [TBL] [Abstract][Full Text] [Related]
14. Molecular determinants of nuclear protein phosphatase-1 regulation by NIPP-1. Beullens M; Van Eynde A; Vulsteke V; Connor J; Shenolikar S; Stalmans W; Bollen M J Biol Chem; 1999 May; 274(20):14053-61. PubMed ID: 10318819 [TBL] [Abstract][Full Text] [Related]
15. Stimulation of hepatocytic AMP-activated protein kinase by okadaic acid and other autophagy-suppressive toxins. Samari HR; Møller MT; Holden L; Asmyhr T; Seglen PO Biochem J; 2005 Mar; 386(Pt 2):237-44. PubMed ID: 15461583 [TBL] [Abstract][Full Text] [Related]
16. Expression, purification, and crystallization of the catalytic domain of protein tyrosine phosphatase SHP-1. Liang X; Meng W; Niu T; Zhao Z; Zhou GW J Struct Biol; 1997 Nov; 120(2):201-3. PubMed ID: 9417985 [TBL] [Abstract][Full Text] [Related]
17. Structural and functional effects of disease-causing amino acid substitutions affecting residues Ala72 and Glu76 of the protein tyrosine phosphatase SHP-2. Bocchinfuso G; Stella L; Martinelli S; Flex E; Carta C; Pantaleoni F; Pispisa B; Venanzi M; Tartaglia M; Palleschi A Proteins; 2007 Mar; 66(4):963-74. PubMed ID: 17177198 [TBL] [Abstract][Full Text] [Related]
18. Site-directed mutagenesis, kinetic, and spectroscopic studies of the P-loop residues in a low molecular weight protein tyrosine phosphatase. Evans B; Tishmack PA; Pokalsky C; Zhang M; Van Etten RL Biochemistry; 1996 Oct; 35(42):13609-17. PubMed ID: 8885840 [TBL] [Abstract][Full Text] [Related]
19. Tyrosine-272 is involved in the inhibition of protein phosphatase-1 by multiple toxins. Zhang L; Zhang Z; Long F; Lee EY Biochemistry; 1996 Feb; 35(5):1606-11. PubMed ID: 8634292 [TBL] [Abstract][Full Text] [Related]
20. The importance of Loop 7 for the activity of calcineurin. Liu P; Huang C; Wang HL; Zhou K; Xiao FX; Qun W FEBS Lett; 2004 Nov; 577(1-2):205-8. PubMed ID: 15527786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]