These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 10753807)

  • 41. Short wavelength collective dynamics in phospholipid bilayers: a molecular dynamics study.
    Tarek M; Tobias DJ; Chen SH; Klein ML
    Phys Rev Lett; 2001 Dec; 87(23):238101. PubMed ID: 11736477
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nanoscale dynamics of phospholipids reveals an optimal assembly mechanism of pore-forming proteins in bilayer membranes.
    Sarangi NK; Ayappa KG; Visweswariah SS; Basu JK
    Phys Chem Chem Phys; 2016 Nov; 18(43):29935-29945. PubMed ID: 27762416
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular dynamics simulations of lipid membranes with lateral force: rupture and dynamic properties.
    Xie JY; Ding GH; Karttunen M
    Biochim Biophys Acta; 2014 Mar; 1838(3):994-1002. PubMed ID: 24374317
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of hydrogen bonding and helix-lipid interactions in transmembrane helix association.
    Lee J; Im W
    J Am Chem Soc; 2008 May; 130(20):6456-62. PubMed ID: 18422318
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The interfacial lipid binding site on the potassium channel KcsA is specific for anionic phospholipids.
    Marius P; Alvis SJ; East JM; Lee AG
    Biophys J; 2005 Dec; 89(6):4081-9. PubMed ID: 16199503
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling and molecular dynamics simulation of the human gonadotropin-releasing hormone receptor in a lipid bilayer.
    Jardón-Valadez E; Ulloa-Aguirre A; Piñeiro A
    J Phys Chem B; 2008 Aug; 112(34):10704-13. PubMed ID: 18680336
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A comparative molecular dynamics analysis of the amyloid beta-peptide in a lipid bilayer.
    Lemkul JA; Bevan DR
    Arch Biochem Biophys; 2008 Feb; 470(1):54-63. PubMed ID: 18053791
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computational Design of Membrane Curvature-Sensing Peptides.
    de Jesus AJ; Yin H
    Methods Mol Biol; 2017; 1529():417-437. PubMed ID: 27914065
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Diffusion and spectroscopy of water and lipids in fully hydrated dimyristoylphosphatidylcholine bilayer membranes.
    Yang J; Calero C; Martí J
    J Chem Phys; 2014 Mar; 140(10):104901. PubMed ID: 24628199
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Coarse-grained simulation: a high-throughput computational approach to membrane proteins.
    Sansom MS; Scott KA; Bond PJ
    Biochem Soc Trans; 2008 Feb; 36(Pt 1):27-32. PubMed ID: 18208379
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Simulations of simple Bovine and Homo sapiens outer cortex ocular lens membrane models with a majority concentration of cholesterol.
    Adams M; Wang E; Zhuang X; Klauda JB
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):2134-2144. PubMed ID: 29169746
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular dynamics simulation studies of lipid bilayer systems.
    Pasenkiewicz-Gierula M; Murzyn K; Róg T; Czaplewski C
    Acta Biochim Pol; 2000; 47(3):601-11. PubMed ID: 11310963
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modeling and simulations of a bacterial outer membrane protein: OprF from Pseudomonas aeruginosa.
    Khalid S; Bond PJ; Deol SS; Sansom MS
    Proteins; 2006 Apr; 63(1):6-15. PubMed ID: 16397890
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Protein-induced membrane disorder: a molecular dynamics study of melittin in a dipalmitoylphosphatidylcholine bilayer.
    Bachar M; Becker OM
    Biophys J; 2000 Mar; 78(3):1359-75. PubMed ID: 10692322
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Anionic phospholipid interactions with the potassium channel KcsA: simulation studies.
    Deol SS; Domene C; Bond PJ; Sansom MS
    Biophys J; 2006 Feb; 90(3):822-30. PubMed ID: 16272446
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structural basis for maintenance of bacterial outer membrane lipid asymmetry.
    Abellón-Ruiz J; Kaptan SS; Baslé A; Claudi B; Bumann D; Kleinekathöfer U; van den Berg B
    Nat Microbiol; 2017 Dec; 2(12):1616-1623. PubMed ID: 29038444
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Strength of integration of transmembrane alpha-helical peptides in lipid bilayers as determined by atomic force spectroscopy.
    Ganchev DN; Rijkers DT; Snel MM; Killian JA; de Kruijff B
    Biochemistry; 2004 Nov; 43(47):14987-93. PubMed ID: 15554706
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microscopic structure of phospholipid bilayers: comparison between molecular dynamics simulations and wide-angle X-ray spectra.
    Sega M; Garberoglio G; Brocca P; Cantù L
    J Phys Chem B; 2007 Mar; 111(10):2484-9. PubMed ID: 17315912
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Partitioning of amino acid side chains into lipid bilayers: results from computer simulations and comparison to experiment.
    MacCallum JL; Bennett WF; Tieleman DP
    J Gen Physiol; 2007 May; 129(5):371-7. PubMed ID: 17438118
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.