These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. The refined structure of human rhinovirus 16 at 2.15 A resolution: implications for the viral life cycle. Hadfield AT; Lee Wm; Zhao R; Oliveira MA; Minor I; Rueckert RR; Rossmann MG Structure; 1997 Mar; 5(3):427-41. PubMed ID: 9083115 [TBL] [Abstract][Full Text] [Related]
7. Normal mode calculations of icosahedral viruses with full dihedral flexibility by use of molecular symmetry. van Vlijmen HW; Karplus M J Mol Biol; 2005 Jul; 350(3):528-42. PubMed ID: 15922356 [TBL] [Abstract][Full Text] [Related]
8. Molecular dynamics investigation of the effect of an antiviral compound on human rhinovirus. Phelps DK; Post CB Protein Sci; 1999 Nov; 8(11):2281-9. PubMed ID: 10595531 [TBL] [Abstract][Full Text] [Related]
9. Influence of an antiviral compound on the temperature dependence of viral protein flexibility and packing: a molecular dynamics study. Phelps DK; Rossky PJ; Post CB J Mol Biol; 1998 Feb; 276(2):331-7. PubMed ID: 9512706 [TBL] [Abstract][Full Text] [Related]
10. The structure of antiviral agents that inhibit uncoating when complexed with viral capsids. Rossmann MG Antiviral Res; 1989 Feb; 11(1):3-13. PubMed ID: 2540708 [TBL] [Abstract][Full Text] [Related]
11. Structures of poliovirus complexes with anti-viral drugs: implications for viral stability and drug design. Grant RA; Hiremath CN; Filman DJ; Syed R; Andries K; Hogle JM Curr Biol; 1994 Sep; 4(9):784-97. PubMed ID: 7820548 [TBL] [Abstract][Full Text] [Related]
12. Modelling the self-assembly of virus capsids. Johnston IG; Louis AA; Doye JP J Phys Condens Matter; 2010 Mar; 22(10):104101. PubMed ID: 21389435 [TBL] [Abstract][Full Text] [Related]
13. Use of the multiple copy simultaneous search (MCSS) method to design a new class of picornavirus capsid binding drugs. Joseph-McCarthy D; Hogle JM; Karplus M Proteins; 1997 Sep; 29(1):32-58. PubMed ID: 9294865 [TBL] [Abstract][Full Text] [Related]
15. Energetics of quasiequivalence: computational analysis of protein-protein interactions in icosahedral viruses. Reddy VS; Giesing HA; Morton RT; Kumar A; Post CB; Brooks CL; Johnson JE Biophys J; 1998 Jan; 74(1):546-58. PubMed ID: 9449355 [TBL] [Abstract][Full Text] [Related]
16. Motion of an antiviral compound in a rhinovirus capsid under rotational symmetry boundary conditions. Yoneda S; Yoneda T; Kurihara Y; Umeyama H J Mol Graph Model; 2002 Aug; 21(1):19-27. PubMed ID: 12413027 [TBL] [Abstract][Full Text] [Related]
17. Structural analysis of antiviral agents that interact with the capsid of human rhinoviruses. Badger J; Minor I; Oliveira MA; Smith TJ; Rossmann MG Proteins; 1989; 6(1):1-19. PubMed ID: 2558377 [TBL] [Abstract][Full Text] [Related]
18. Model for the differential stabilities of rhinovirus and poliovirus to mild acidic pH, based on electrostatics calculations. Warwicker J J Mol Biol; 1992 Jan; 223(1):247-57. PubMed ID: 1309885 [TBL] [Abstract][Full Text] [Related]
19. Investigation of a predicted N-terminal amphipathic α-helix using atomistic molecular dynamics simulation of a complete prototype poliovirus virion. Roberts JA; Kuiper MJ; Thorley BR; Smooker PM; Hung A J Mol Graph Model; 2012 Sep; 38():165-73. PubMed ID: 23085162 [TBL] [Abstract][Full Text] [Related]
20. Modelling of the tertiary structure of coxsackievirus B3 from the structure of poliovirus and rhinovirus. Liljas L; Lindberg AM; Pettersson U Scand J Infect Dis Suppl; 1993; 88():15-24. PubMed ID: 8390718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]