BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 10753893)

  • 1. An investigation of the metabolism of isoleucine to active Amyl alcohol in Saccharomyces cerevisiae.
    Dickinson JR; Harrison SJ; Dickinson JA; Hewlins MJ
    J Biol Chem; 2000 Apr; 275(15):10937-42. PubMed ID: 10753893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae.
    Dickinson JR; Lanterman MM; Danner DJ; Pearson BM; Sanz P; Harrison SJ; Hewlins MJ
    J Biol Chem; 1997 Oct; 272(43):26871-8. PubMed ID: 9341119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae.
    Dickinson JR; Harrison SJ; Hewlins MJ
    J Biol Chem; 1998 Oct; 273(40):25751-6. PubMed ID: 9748245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyruvate decarboxylase catalyzes decarboxylation of branched-chain 2-oxo acids but is not essential for fusel alcohol production by Saccharomyces cerevisiae.
    ter Schure EG; Flikweert MT; van Dijken JP; Pronk JT; Verrips CT
    Appl Environ Microbiol; 1998 Apr; 64(4):1303-7. PubMed ID: 9546164
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of valine catabolism in Pseudomonas putida.
    Marshall VD; Sokatch JR
    J Bacteriol; 1972 Jun; 110(3):1073-81. PubMed ID: 5030618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate specificity of thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae.
    Romagnoli G; Luttik MA; Kötter P; Pronk JT; Daran JM
    Appl Environ Microbiol; 2012 Nov; 78(21):7538-48. PubMed ID: 22904058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Common enzymes of branched-chain amino acid catabolism in Pseudomonas putida.
    Martin RR; Marshall VD; Sokatch JR; Unger L
    J Bacteriol; 1973 Jul; 115(1):198-204. PubMed ID: 4352175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. D- and L-isoleucine metabolism and regulation of their pathways in Pseudomonas putida.
    Conrad RS; Massey LK; Sokatch JR
    J Bacteriol; 1974 Apr; 118(1):103-11. PubMed ID: 4150713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae.
    Vuralhan Z; Morais MA; Tai SL; Piper MD; Pronk JT
    Appl Environ Microbiol; 2003 Aug; 69(8):4534-41. PubMed ID: 12902239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PDC6, a weakly expressed pyruvate decarboxylase gene from yeast, is activated when fused spontaneously under the control of the PDC1 promoter.
    Hohmann S
    Curr Genet; 1991 Nov; 20(5):373-8. PubMed ID: 1807827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Valine metabolism in vivo: effects of high dietary levels of leucine and isoleucine.
    Block KP; Harper AE
    Metabolism; 1984 Jun; 33(6):559-66. PubMed ID: 6727655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of branched-chain alpha-ketoacid dehydrogenase in isolated hepatocytes by branched-chain alpha-ketoacids.
    Han AC; Goodwin GW; Paxton R; Harris RA
    Arch Biochem Biophys; 1987 Oct; 258(1):85-94. PubMed ID: 3662542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A single acyl-CoA dehydrogenase is required for catabolism of isoleucine, valine and short-chain fatty acids in Aspergillus nidulans.
    Maggio-Hall LA; Lyne P; Wolff JA; Keller NP
    Fungal Genet Biol; 2008 Mar; 45(3):180-9. PubMed ID: 17656140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae.
    Hohmann S
    J Bacteriol; 1991 Dec; 173(24):7963-9. PubMed ID: 1744053
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolated 2-methylbutyrylglycinuria caused by short/branched-chain acyl-CoA dehydrogenase deficiency: identification of a new enzyme defect, resolution of its molecular basis, and evidence for distinct acyl-CoA dehydrogenases in isoleucine and valine metabolism.
    Andresen BS; Christensen E; Corydon TJ; Bross P; Pilgaard B; Wanders RJ; Ruiter JP; Simonsen H; Winter V; Knudsen I; Schroeder LD; Gregersen N; Skovby F
    Am J Hum Genet; 2000 Nov; 67(5):1095-103. PubMed ID: 11013134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of leucine and isoleucine metabolites by perfused skeletal muscle and liver of rat.
    Spydevold O; Hokland B
    Int J Biochem; 1983; 15(8):985-90. PubMed ID: 6617955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of higher alcohol flavour compounds by the yeast Saccharomyces cerevisiae: impact of oxygen availability and responses to glucose pulse in minimal growth medium with leucine as sole nitrogen source.
    Espinosa Vidal E; de Morais MA; François JM; de Billerbeck GM
    Yeast; 2015 Jan; 32(1):47-56. PubMed ID: 25274068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the interaction of isoleucine paired with other amino acids in soy whey alcohol fermentation using Torulaspora delbrueckii.
    Chua JY; Tan SJ; Liu SQ
    Int J Food Microbiol; 2020 Nov; 333():108802. PubMed ID: 32745827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic analysis reveals evidence for branched chain amino acid catabolism crosstalk and the potential for improved treatment of organic acidurias.
    McCalley S; Pirman D; Clasquin M; Johnson K; Jin S; Vockley J
    Mol Genet Metab; 2019; 128(1-2):57-61. PubMed ID: 31133529
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Zhang M; Yu XW; Xu Y; Jouhten P; Swapna GVT; Glaser RW; Hunt JF; Montelione GT; Maaheimo H; Szyperski T
    FEBS J; 2017 Sep; 284(18):3100-3113. PubMed ID: 28731268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.