These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 10754215)

  • 1. On the fractal properties of natural human standing.
    Duarte M; Zatsiorsky VM
    Neurosci Lett; 2000 Apr; 283(3):173-6. PubMed ID: 10754215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliability of traditional and fractal dimension measures of quiet stance center of pressure in young, healthy people.
    Doyle TL; Newton RU; Burnett AF
    Arch Phys Med Rehabil; 2005 Oct; 86(10):2034-40. PubMed ID: 16213250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fractal properties of postural sway during quiet stance with changed visual and proprioceptive inputs.
    Stambolieva K
    J Physiol Sci; 2011 Mar; 61(2):123-30. PubMed ID: 21246316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive fractal analysis reveals limits to fractal scaling in center of pressure trajectories.
    Kuznetsov N; Bonnette S; Gao J; Riley MA
    Ann Biomed Eng; 2013 Aug; 41(8):1646-60. PubMed ID: 22956160
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear detrended fluctuation analysis of sitting center-of-pressure data as an early measure of motor development pathology in infants.
    Deffeyes JE; Kochi N; Harbourne RT; Kyvelidou A; Stuberg WA; Stergiou N
    Nonlinear Dynamics Psychol Life Sci; 2009 Oct; 13(4):351-68. PubMed ID: 19781135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition from persistent to anti-persistent correlations in postural sway indicates velocity-based control.
    Delignières D; Torre K; Bernard PL
    PLoS Comput Biol; 2011 Feb; 7(2):e1001089. PubMed ID: 21390333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bodywide fluctuations support manual exploration: Fractal fluctuations in posture predict perception of heaviness and length via effortful touch by the hand.
    Mangalam M; Chen R; McHugh TR; Singh T; Kelty-Stephen DG
    Hum Mov Sci; 2020 Feb; 69():102543. PubMed ID: 31715380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of voluntary and automatic control of center of pressure sway during quiet standing.
    Ueta K; Okada Y; Nakano H; Osumi M; Morioka S
    J Mot Behav; 2015; 47(3):256-64. PubMed ID: 25425422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Persistence in postural dynamics is dependent on constraints of vision, postural orientation, and the temporal structure of support surface translations.
    Rand TJ; Ambati VNP; Mukherjee M
    Exp Brain Res; 2019 Mar; 237(3):601-610. PubMed ID: 30506391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How a plantar pressure-based, tongue-placed tactile biofeedback modifies postural control mechanisms during quiet standing.
    Vuillerme N; Pinsault N; Chenu O; Boisgontier M; Demongeot J; Payan Y
    Exp Brain Res; 2007 Aug; 181(4):547-54. PubMed ID: 17476487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postural effects of the scaled display of visual foot center of pressure feedback under different somatosensory conditions at the foot and the ankle.
    Vuillerme N; Bertrand R; Pinsault N
    Arch Phys Med Rehabil; 2008 Oct; 89(10):2034-6. PubMed ID: 18929035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of postural control in quiet standing using center of mass acceleration: comparison among the young, the elderly, and people with stroke.
    Yu E; Abe M; Masani K; Kawashima N; Eto F; Haga N; Nakazawa K
    Arch Phys Med Rehabil; 2008 Jun; 89(6):1133-9. PubMed ID: 18503811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifractal roots of suprapostural dexterity.
    Kelty-Stephen DG; Lee IC; Carver NS; Newell KM; Mangalam M
    Hum Mov Sci; 2021 Apr; 76():102771. PubMed ID: 33601240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of plantar cutaneous sensation in unperturbed stance.
    Meyer PF; Oddsson LI; De Luca CJ
    Exp Brain Res; 2004 Jun; 156(4):505-12. PubMed ID: 14968274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptation effects in static postural control by providing simultaneous visual feedback of center of pressure and center of gravity.
    Takeda K; Mani H; Hasegawa N; Sato Y; Tanaka S; Maejima H; Asaka T
    J Physiol Anthropol; 2017 Jul; 36(1):31. PubMed ID: 28724444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-related changes in human postural control of prolonged standing.
    Freitas SM; Wieczorek SA; Marchetti PH; Duarte M
    Gait Posture; 2005 Dec; 22(4):322-30. PubMed ID: 16274914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in center-of-pressure dynamics during upright standing related to decreased balance control in young adults: fractional Brownian motion analysis.
    Tanaka H; Uetake T; Kuriki S; Ikeda S
    J Hum Ergol (Tokyo); 2002 Dec; 31(1-2):1-11. PubMed ID: 12908330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examination of quantitative and fractal analysis of sway characteristics of the center of foot pressure movement during a static upright posture. Analysis based on alcohol intake.
    Noda M; Demura S; Kitabayashi T; Imaoka K
    J Sports Med Phys Fitness; 2005 Jun; 45(2):229-37. PubMed ID: 16355086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential integration of kinaesthetic signals to postural control.
    Isableu B; Vuillerme N
    Exp Brain Res; 2006 Oct; 174(4):763-8. PubMed ID: 17016738
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Center of pressure velocity reflects body acceleration rather than body velocity during quiet standing.
    Masani K; Vette AH; Abe MO; Nakazawa K
    Gait Posture; 2014 Mar; 39(3):946-52. PubMed ID: 24444652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.