These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 10754253)
1. Characterization of the naphthalene-degrading bacterium, Rhodococcus opacus M213. Uz I; Duan YP; Ogram A FEMS Microbiol Lett; 2000 Apr; 185(2):231-8. PubMed ID: 10754253 [TBL] [Abstract][Full Text] [Related]
2. Comparative Genomics and Metabolic Analysis Reveals Peculiar Characteristics of Rhodococcus opacus Strain M213 Particularly for Naphthalene Degradation. Pathak A; Chauhan A; Blom J; Indest KJ; Jung CM; Stothard P; Bera G; Green SJ; Ogram A PLoS One; 2016; 11(8):e0161032. PubMed ID: 27532207 [TBL] [Abstract][Full Text] [Related]
3. [Analysis of aromatic hydrocarbon catabolic genes in strains isolated from soil in Patagonia]. Vacca GS; Kiesel B; Wünsche L; Pucci OH Rev Argent Microbiol; 2002; 34(3):138-49. PubMed ID: 12415896 [TBL] [Abstract][Full Text] [Related]
4. Characterization of Rhodococcus opacus R7, a strain able to degrade naphthalene and o-xylene isolated from a polycyclic aromatic hydrocarbon-contaminated soil. Di Gennaro P; Rescalli E; Galli E; Sello G; Bestetti G Res Microbiol; 2001 Sep; 152(7):641-51. PubMed ID: 11605984 [TBL] [Abstract][Full Text] [Related]
5. A gene cluster encoding steps in conversion of naphthalene to gentisate in Pseudomonas sp. strain U2. Fuenmayor SL; Wild M; Boyes AL; Williams PA J Bacteriol; 1998 May; 180(9):2522-30. PubMed ID: 9573207 [TBL] [Abstract][Full Text] [Related]
6. Benzoate degradation by Rhodococcus opacus 1CP after dormancy: Characterization of dioxygenases involved in the process. Solyanikova IP; Emelyanova EV; Borzova OV; Golovleva LA J Environ Sci Health B; 2016; 51(3):182-91. PubMed ID: 26669259 [TBL] [Abstract][Full Text] [Related]
7. Dioxygenases of Chlorobiphenyl-Degrading Species Rhodococcus wratislaviensis G10 and Chlorophenol-Degrading Species Rhodococcus opacus 1CP Induced in Benzoate-Grown Cells and Genes Potentially Involved in These Processes. Solyanikova IP; Borzova OV; Emelyanova EV; Shumkova ES; Prisyazhnaya NV; Plotnikova EG; Golovleva LA Biochemistry (Mosc); 2016 Sep; 81(9):986-98. PubMed ID: 27682171 [TBL] [Abstract][Full Text] [Related]
8. Competition of plasmid-bearing Pseudomonas putida strains catabolizing naphthalene via various pathways in chemostat culture. Filonov AE; Duetz WA; Karpov AV; Gaiazov RR; Kosheleva IA; Breure AM; Filonova IF; van Andel JG; Boronin AM Appl Microbiol Biotechnol; 1997 Oct; 48(4):493-8. PubMed ID: 9390458 [TBL] [Abstract][Full Text] [Related]
9. Naphthalene-degrading bacteria of the genus Rhodococcus from the Verkhnekamsk salt mining region of Russia. Anan'ina LN; Yastrebova OV; Demakov VA; Plotnikova EG Antonie Van Leeuwenhoek; 2011 Aug; 100(2):309-16. PubMed ID: 21503712 [TBL] [Abstract][Full Text] [Related]
10. Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4. Grund E; Denecke B; Eichenlaub R Appl Environ Microbiol; 1992 Jun; 58(6):1874-7. PubMed ID: 1622263 [TBL] [Abstract][Full Text] [Related]
11. Genome Analysis of Naphthalene-Degrading Kim J; Park W J Microbiol Biotechnol; 2018 Feb; 28(2):330-337. PubMed ID: 29169219 [TBL] [Abstract][Full Text] [Related]
12. Versatile catechol dioxygenases in Sphingobium scionense WP01 Muthu M; Ophir Y; Macdonald LJ; Vaidya A; Lloyd-Jones G Antonie Van Leeuwenhoek; 2018 Dec; 111(12):2293-2301. PubMed ID: 29959655 [TBL] [Abstract][Full Text] [Related]
13. Marinobacter strain NCE312 has a Pseudomonas-like naphthalene dioxygenase. Hedlund BP; Geiselbrecht AD; Staley JT FEMS Microbiol Lett; 2001 Jul; 201(1):47-51. PubMed ID: 11445166 [TBL] [Abstract][Full Text] [Related]
14. Identification and characterization of o-xylene-degrading Rhodococcus spp. which were dominant species in the remediation of o-xylene-contaminated soils. Taki H; Syutsubo K; Mattison RG; Harayama S Biodegradation; 2007 Feb; 18(1):17-26. PubMed ID: 16485082 [TBL] [Abstract][Full Text] [Related]
15. Isolation and functional analysis of a glycolipid producing Rhodococcus sp. strain IITR03 with potential for degradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT). Bajaj A; Mayilraj S; Mudiam MK; Patel DK; Manickam N Bioresour Technol; 2014 Sep; 167():398-406. PubMed ID: 25000395 [TBL] [Abstract][Full Text] [Related]
16. [Identification of the key genes of naphthalene catabolism in soil DNA]. Mavrodi DV; Kovalenko NP; Sokolov SL; Parfeniuk VG; Kosheleva IA; Boronin AM Mikrobiologiia; 2003; 72(5):672-80. PubMed ID: 14679907 [TBL] [Abstract][Full Text] [Related]
17. Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR. Mesarch MB; Nakatsu CH; Nies L Appl Environ Microbiol; 2000 Feb; 66(2):678-83. PubMed ID: 10653735 [TBL] [Abstract][Full Text] [Related]
18. [Regulation of the synthesis of the key enzymes for naphthalene catabolism in Pseudomonas putida and Pseudomonas fluorescens carrying the biodegradation plasmids NAH, pBS3, pBS2 and NPL-1]. Starovoĭtov II Mikrobiologiia; 1985; 54(5):755-62. PubMed ID: 3937034 [TBL] [Abstract][Full Text] [Related]
19. Specificity of catechol ortho-cleavage during para-toluate degradation by Rhodococcus opacus 1cp. Suvorova MM; Solianikova IP; Golovleva LA Biochemistry (Mosc); 2006 Dec; 71(12):1316-23. PubMed ID: 17223783 [TBL] [Abstract][Full Text] [Related]
20. Plasmid- and chromosome-mediated dissimilation of naphthalene and salicylate in Pseudomonas putida PMD-1. Zuniga MC; Durham DR; Welch RA J Bacteriol; 1981 Sep; 147(3):836-43. PubMed ID: 7275935 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]