These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 10754269)
1. Electron-paramagnetic resonance spectroscopy using N-methyl-D-glucamine dithiocarbamate iron cannot discriminate between nitric oxide and nitroxyl: implications for the detection of reaction products for nitric oxide synthase. Komarov AM; Wink DA; Feelisch M; Schmidt HH Free Radic Biol Med; 2000 Mar; 28(5):739-42. PubMed ID: 10754269 [TBL] [Abstract][Full Text] [Related]
2. Electron paramagnetic resonance spectroscopy with N-methyl-D-glucamine dithiocarbamate iron complexes distinguishes nitric oxide and nitroxyl anion in a redox-dependent manner: applications in identifying nitrogen monoxide products from nitric oxide synthase. Xia Y; Cardounel AJ; Vanin AF; Zweier JL Free Radic Biol Med; 2000 Oct; 29(8):793-7. PubMed ID: 11053782 [TBL] [Abstract][Full Text] [Related]
3. Nitric oxide-forming reaction between the iron-N-methyl-D-glucamine dithiocarbamate complex and nitrite. Tsuchiya K; Yoshizumi M; Houchi H; Mason RP J Biol Chem; 2000 Jan; 275(3):1551-6. PubMed ID: 10636843 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of vascular actions of the nitric oxide-trapping agent, N-methyl-D-glucamine dithiocarbamate-Fe2+, on basal and agonist-stimulated nitric oxide activity. Pieper GM; Lai CS Biochem Biophys Res Commun; 1996 Feb; 219(2):584-90. PubMed ID: 8605031 [TBL] [Abstract][Full Text] [Related]
5. Detection of nitric oxide production in mice by spin-trapping electron paramagnetic resonance spectroscopy. Komarov AM; Lai CS Biochim Biophys Acta; 1995 Aug; 1272(1):29-36. PubMed ID: 7662717 [TBL] [Abstract][Full Text] [Related]
7. Antioxidant capacity of mononitrosyl-iron-dithiocarbamate complexes: implications for NO trapping. Vanin AF; Huisman A; Stroes ES; de Ruijter-Heijstek FC; Rabelink TJ; van Faassen EE Free Radic Biol Med; 2001 Apr; 30(8):813-24. PubMed ID: 11295524 [TBL] [Abstract][Full Text] [Related]
8. Ex vivo EPR detection of nitric oxide in brain tissue. Fujii H; Berliner LJ Magn Reson Med; 1999 Sep; 42(3):599-602. PubMed ID: 10467306 [TBL] [Abstract][Full Text] [Related]
9. In vivo detection of nitric oxide distribution in mice. Komarov AM Mol Cell Biochem; 2002; 234-235(1-2):387-92. PubMed ID: 12162457 [TBL] [Abstract][Full Text] [Related]
10. Direct measurement of nitric oxide generation from nitric oxide synthase. Xia Y; Zweier JL Proc Natl Acad Sci U S A; 1997 Nov; 94(23):12705-10. PubMed ID: 9356514 [TBL] [Abstract][Full Text] [Related]
11. Estimation of nitric oxide level in vivo by microdialysis with water-soluble iron-N-methyl-D-dithiocarbamate complexes as NO traps: a novel approach to nitric oxide spin trapping in animal tissues. Timoshin AA; Drobotova DY; Lakomkin VL; Ruuge EK; Vanin AF Nitric Oxide; 2008 Dec; 19(4):338-44. PubMed ID: 18664386 [TBL] [Abstract][Full Text] [Related]
12. Biological evaluation of the nitric oxide-trapping agent, N-methyl-D-glucamine dithiocarbamate-Fe2+, as a probe of nitric oxide activity released from control and diabetic rat endothelium. Pieper GM; Lai CS Jpn J Pharmacol; 1999 Aug; 80(4):359-70. PubMed ID: 10496337 [TBL] [Abstract][Full Text] [Related]
13. The role of thiol and nitrosothiol compounds in the nitric oxide-forming reactions of the iron-N-methyl-d-glucamine dithiocarbamate complex. Tsuchiya K; Kirima K; Yoshizumi M; Houchi H; Tamaki T; Mason RP Biochem J; 2002 Nov; 367(Pt 3):771-9. PubMed ID: 12141947 [TBL] [Abstract][Full Text] [Related]
14. EPR detection of endogenous nitric oxide in postischemic heart using lipid and aqueous-soluble dithiocarbamate-iron complexes. Komarov AM; Kramer JH; Mak IT; Weglicki WB Mol Cell Biochem; 1997 Oct; 175(1-2):91-7. PubMed ID: 9350038 [TBL] [Abstract][Full Text] [Related]
15. Decomposition of water-soluble mononitrosyl iron complexes with dithiocarbamates and of dinitrosyl iron complexes with thiol ligands in animal organisms. Serezhenkov VA; Timoshin AA; Orlova TR; Mikoyan VD; Kubrina LN; Poltorakov AP; Ruuge EK; Sanina NA; Vanin AF Nitric Oxide; 2008 May; 18(3):195-203. PubMed ID: 18222183 [TBL] [Abstract][Full Text] [Related]
16. In vivo on-line detection of no distribution in endotoxin-treated mice by l-band ESR. Komarov AM Cell Mol Biol (Noisy-le-grand); 2000 Dec; 46(8):1329-36. PubMed ID: 11156478 [TBL] [Abstract][Full Text] [Related]
17. Differential effect of buffer on the spin trapping of nitric oxide by iron chelates. Porasuphatana S; Weaver J; Budzichowski TA; Tsai P; Rosen GM Anal Biochem; 2001 Nov; 298(1):50-6. PubMed ID: 11673894 [TBL] [Abstract][Full Text] [Related]
18. Nitric oxide: prospects and perspectives of in vivo detection by L-band EPR spectroscopy. Fujii H; Berliner LJ Phys Med Biol; 1998 Jul; 43(7):1949-56. PubMed ID: 9703058 [TBL] [Abstract][Full Text] [Related]
19. Spin trapping of nitric oxide produced in vivo in septic-shock mice. Lai CS; Komarov AM FEBS Lett; 1994 May; 345(2-3):120-4. PubMed ID: 8200442 [TBL] [Abstract][Full Text] [Related]
20. Redox properties of iron-dithiocarbamates and their nitrosyl derivatives: implications for their use as traps of nitric oxide in biological systems. Vanin AF; Liu X; Samouilov A; Stukan RA; Zweier JL Biochim Biophys Acta; 2000 May; 1474(3):365-77. PubMed ID: 10779689 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]