These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

944 related articles for article (PubMed ID: 10755318)

  • 1. N,N-diethyl-2-[4-(phenylmethyl)phenoxy] ethanamine (DPPE) a chemopotentiating and cytoprotective agent in clinical trials: interaction with histamine at cytochrome P450 3A4 and other isozymes that metabolize antineoplastic drugs.
    Brandes LJ; Queen GM; LaBella FS
    Cancer Chemother Pharmacol; 2000; 45(4):298-304. PubMed ID: 10755318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The phospholipidosis-lnducing potential of the chemopotentiating drug, N,N-Diethyl-2-[4-(phenylmethyl)phenoxy]ethanamine (DPPE, tesmilifene) correlates with its stimulation of phosphatidylserine synthesis and exposure on the plasma membrane in MCF-7 breast cancer cells.
    Xu FY; Queen G; Brandes L; Hatch GM
    Proc West Pharmacol Soc; 2007; 50():61-3. PubMed ID: 18605231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased therapeutic index of antineoplastic drugs in combination with intracellular histamine antagonists.
    Brandes LJ; LaBella FS; Warrington RC
    J Natl Cancer Inst; 1991 Sep; 83(18):1329-36. PubMed ID: 1886159
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N,N-diethyl-2-[4-(phenylmethyl) phenoxy] ethanamine (DPPE; tesmilifene), a chemopotentiating agent with hormetic effects on DNA synthesis in vitro, may improve survival in patients with metastatic breast cancer.
    Brandes LJ
    Hum Exp Toxicol; 2008 Feb; 27(2):143-7. PubMed ID: 18480139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytochrome P450 isozymes 3A4 and 2B6 are involved in the in vitro human metabolism of thiotepa to TEPA.
    Jacobson PA; Green K; Birnbaum A; Remmel RP
    Cancer Chemother Pharmacol; 2002 Jun; 49(6):461-7. PubMed ID: 12107550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of a potent inhibitory monoclonal antibody to cytochrome P-450 3A4 in assessment of human drug metabolism.
    Mei Q; Tang C; Assang C; Lin Y; Slaughter D; Rodrigues AD; Baillie TA; Rushmore TH; Shou M
    J Pharmacol Exp Ther; 1999 Nov; 291(2):749-59. PubMed ID: 10525096
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of human liver cytochrome P450 enzymes that metabolize the nonsedating antihistamine loratadine. Formation of descarboethoxyloratadine by CYP3A4 and CYP2D6.
    Yumibe N; Huie K; Chen KJ; Snow M; Clement RP; Cayen MN
    Biochem Pharmacol; 1996 Jan; 51(2):165-72. PubMed ID: 8615885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of human liver cytochrome P450 isoforms involved in the in vitro metabolism of cyclobenzaprine.
    Wang RW; Liu L; Cheng H
    Drug Metab Dispos; 1996 Jul; 24(7):786-91. PubMed ID: 8818577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Azelastine N-demethylation by cytochrome P-450 (CYP)3A4, CYP2D6, and CYP1A2 in human liver microsomes: evaluation of approach to predict the contribution of multiple CYPs.
    Nakajima M; Nakamura S; Tokudome S; Shimada N; Yamazaki H; Yokoi T
    Drug Metab Dispos; 1999 Dec; 27(12):1381-91. PubMed ID: 10570018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of epinastine, a histamine H1 receptor antagonist, in human liver microsomes in comparison with that of terfenadine.
    Kishimoto W; Hiroi T; Sakai K; Funae Y; Igarashi T
    Res Commun Mol Pathol Pharmacol; 1997 Dec; 98(3):273-92. PubMed ID: 9485522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CYP2B6, CYP3A4, and CYP2C19 are responsible for the in vitro N-demethylation of meperidine in human liver microsomes.
    Ramírez J; Innocenti F; Schuetz EG; Flockhart DA; Relling MV; Santucci R; Ratain MJ
    Drug Metab Dispos; 2004 Sep; 32(9):930-6. PubMed ID: 15319333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of three cytochrome P450 isozymes involved in N-demethylation of citalopram enantiomers in human liver microsomes.
    Rochat B; Amey M; Gillet M; Meyer UA; Baumann P
    Pharmacogenetics; 1997 Feb; 7(1):1-10. PubMed ID: 9110356
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro metabolism of the calmodulin antagonist DY-9760e (3-[2-[4-(3-chloro-2-methylphenyl)-1-piperazinyl]ethyl]-5,6-dimethoxy-1-(4-imidazolylmethyl)-1H-indazole dihydrochloride 3.5 hydrate) by human liver microsomes: involvement of cytochromes p450 in atypical kinetics and potential drug interactions.
    Tachibana S; Fujimaki Y; Yokoyama H; Okazaki O; Sudo K
    Drug Metab Dispos; 2005 Nov; 33(11):1628-36. PubMed ID: 16049129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic role of cytochrome P4502B6 in the N-demethylation of S-mephenytoin.
    Heyn H; White RB; Stevens JC
    Drug Metab Dispos; 1996 Sep; 24(9):948-54. PubMed ID: 8886603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nortriptyline E-10-hydroxylation in vitro is mediated by human CYP2D6 (high affinity) and CYP3A4 (low affinity): implications for interactions with enzyme-inducing drugs.
    Venkatakrishnan K; von Moltke LL; Greenblatt DJ
    J Clin Pharmacol; 1999 Jun; 39(6):567-77. PubMed ID: 10354960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolism of levo-alpha-Acetylmethadol (LAAM) by human liver cytochrome P450: involvement of CYP3A4 characterized by atypical kinetics with two binding sites.
    Oda Y; Kharasch ED
    J Pharmacol Exp Ther; 2001 Apr; 297(1):410-22. PubMed ID: 11259570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition and kinetics of cytochrome P4503A activity in microsomes from rat, human, and cdna-expressed human cytochrome P450.
    Ghosal A; Satoh H; Thomas PE; Bush E; Moore D
    Drug Metab Dispos; 1996 Sep; 24(9):940-7. PubMed ID: 8886602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of endosulfan-alpha by human liver microsomes and its utility as a simultaneous in vitro probe for CYP2B6 and CYP3A4.
    Casabar RC; Wallace AD; Hodgson E; Rose RL
    Drug Metab Dispos; 2006 Oct; 34(10):1779-85. PubMed ID: 16855053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolism of 2,5-bis(trifluoromethyl)-7-benzyloxy-4-trifluoromethylcoumarin by human hepatic CYP isoforms: evidence for selectivity towards CYP3A4.
    Renwick AB; Lewis DF; Fulford S; Surry D; Williams B; Worboys PD; Cai X; Wang RW; Price RJ; Lake BG; Evans DC
    Xenobiotica; 2001 Apr; 31(4):187-204. PubMed ID: 11465405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of CYP3A4 as the enzyme involved in the mono-N-dealkylation of disopyramide enantiomers in humans.
    Echizen H; Tanizaki M; Tatsuno J; Chiba K; Berwick T; Tani M; Gonzalez FJ; Ishizaki T
    Drug Metab Dispos; 2000 Aug; 28(8):937-44. PubMed ID: 10901704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.