These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 10755742)

  • 61. Regulation of cocaine self-administration in humans: lack of evidence for loading and maintenance phases.
    Angarita GA; Pittman B; Gueorguieva R; Kalayasiri R; Lynch WJ; Sughondhabirom A; Morgan PT; Malison RT
    Pharmacol Biochem Behav; 2010 Mar; 95(1):51-5. PubMed ID: 20005893
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Neuronal spike activity in rat nucleus accumbens during cocaine self-administration under different fixed-ratio schedules.
    Chang JY; Paris JM; Sawyer SF; Kirillov AB; Woodward DJ
    Neuroscience; 1996 Sep; 74(2):483-97. PubMed ID: 8865199
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Intravenous self-administration of morphine and cocaine: a comparative study.
    Mierzejewski P; Koroś E; Goldberg SR; Kostowski W; Stefański R
    Pol J Pharmacol; 2003; 55(5):713-26. PubMed ID: 14704467
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Self-administration of heroin, cocaine and their combination under a discrete trial schedule of reinforcement in rats.
    Martin TJ; Kahn W; Cannon DG; Smith JE
    Drug Alcohol Depend; 2006 May; 82(3):282-6. PubMed ID: 16413144
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Increased accumbens Cdk5 expression in rats after short-access to self-administered cocaine, but not after long-access sessions.
    Seiwell AP; Reveron ME; Duvauchelle CL
    Neurosci Lett; 2007 Apr; 417(1):100-5. PubMed ID: 17339080
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The effects of dose and access restrictions on the periodicity of cocaine self-administration in the rat.
    Fitch TE; Roberts DC
    Drug Alcohol Depend; 1993 Sep; 33(2):119-28. PubMed ID: 8261876
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Activation-induced changes in evoked and slow brain potentials: effects of cocaine in awake rabbit.
    Richter F; Leichsenring A; Haschke W; Kiyatkin EA; Belij VP
    Int J Neurosci; 1991; 56(1-4):151-9. PubMed ID: 1938130
    [TBL] [Abstract][Full Text] [Related]  

  • 68. In infancy, it's the extremes of arousal that are 'sticky': Naturalistic data challenge purely homeostatic approaches to studying self-regulation.
    Wass SV; Smith CG; Clackson K; Mirza FU
    Dev Sci; 2021 May; 24(3):e13059. PubMed ID: 33147373
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Explaining the escalation of drug use in substance dependence: models and appropriate animal laboratory tests.
    Zernig G; Ahmed SH; Cardinal RN; Morgan D; Acquas E; Foltin RW; Vezina P; Negus SS; Crespo JA; Stöckl P; Grubinger P; Madlung E; Haring C; Kurz M; Saria A
    Pharmacology; 2007; 80(2-3):65-119. PubMed ID: 17570954
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Pattern of intake and drug craving predict the development of cocaine addiction-like behavior in rats.
    Belin D; Balado E; Piazza PV; Deroche-Gamonet V
    Biol Psychiatry; 2009 May; 65(10):863-8. PubMed ID: 18639867
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Discriminating goal-directed and habitual cocaine seeking in rats using a novel outcome devaluation procedure.
    Jones BO; Cruz AM; Kim TH; Spencer HF; Smith RJ
    Learn Mem; 2022 Dec; 29(12):447-457. PubMed ID: 36621907
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Dopamine Circuit Mechanisms of Addiction-Like Behaviors.
    Poisson CL; Engel L; Saunders BT
    Front Neural Circuits; 2021; 15():752420. PubMed ID: 34858143
    [TBL] [Abstract][Full Text] [Related]  

  • 73. New directions in modelling dysregulated reward seeking for food and drugs.
    Brown RM; Dayas CV; James MH; Smith RJ
    Neurosci Biobehav Rev; 2022 Jan; 132():1037-1048. PubMed ID: 34736883
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Improving translation of animal models of addiction and relapse by reverse translation.
    Venniro M; Banks ML; Heilig M; Epstein DH; Shaham Y
    Nat Rev Neurosci; 2020 Nov; 21(11):625-643. PubMed ID: 33024318
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The transition to compulsion in addiction.
    Lüscher C; Robbins TW; Everitt BJ
    Nat Rev Neurosci; 2020 May; 21(5):247-263. PubMed ID: 32231315
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effects of Kappa opioid receptor blockade by LY2444296 HCl, a selective short-acting antagonist, during chronic extended access cocaine self-administration and re-exposure in rat.
    Valenza M; Windisch KA; Butelman ER; Reed B; Kreek MJ
    Psychopharmacology (Berl); 2020 Apr; 237(4):1147-1160. PubMed ID: 31915862
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Nonhuman animal models of substance use disorders: Translational value and utility to basic science.
    Smith MA
    Drug Alcohol Depend; 2020 Jan; 206():107733. PubMed ID: 31790978
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The transition to cocaine addiction: the importance of pharmacokinetics for preclinical models.
    Kawa AB; Allain F; Robinson TE; Samaha AN
    Psychopharmacology (Berl); 2019 Apr; 236(4):1145-1157. PubMed ID: 30820634
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Cues play a critical role in estrous cycle-dependent enhancement of cocaine reinforcement.
    Johnson AR; Thibeault KC; Lopez AJ; Peck EG; Sands LP; Sanders CM; Kutlu MG; Calipari ES
    Neuropsychopharmacology; 2019 Jun; 44(7):1189-1197. PubMed ID: 30728447
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Leveraging calcium imaging to illuminate circuit dysfunction in addiction.
    Siciliano CA; Tye KM
    Alcohol; 2019 Feb; 74():47-63. PubMed ID: 30470589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.