These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 10756056)

  • 1. A mutation in human immunodeficiency virus type 1 protease, N88S, that causes in vitro hypersensitivity to amprenavir.
    Ziermann R; Limoli K; Das K; Arnold E; Petropoulos CJ; Parkin NT
    J Virol; 2000 May; 74(9):4414-9. PubMed ID: 10756056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human immunodeficiency virus type 1 hypersusceptibility to amprenavir in vitro can be associated with virus load response to treatment in vivo.
    Zachary KC; Hanna GJ; D'Aquila RT
    Clin Infect Dis; 2001 Dec; 33(12):2075-7. PubMed ID: 11700580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nelfinavir-resistant, amprenavir-hypersusceptible strains of human immunodeficiency virus type 1 carrying an N88S mutation in protease have reduced infectivity, reduced replication capacity, and reduced fitness and process the Gag polyprotein precursor aberrantly.
    Resch W; Ziermann R; Parkin N; Gamarnik A; Swanstrom R
    J Virol; 2002 Sep; 76(17):8659-66. PubMed ID: 12163585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of HIV cross-resistance to protease inhibitors using a rapid single-cycle recombinant virus assay for patients failing on combination therapies.
    Race E; Dam E; Obry V; Paulous S; Clavel F
    AIDS; 1999 Oct; 13(15):2061-8. PubMed ID: 10546858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of resistance to protease inhibitor amprenavir in human immunodeficiency virus type 1-infected patients: selection of four alternative viral protease genotypes and influence of viral susceptibility to coadministered reverse transcriptase nucleoside inhibitors.
    Maguire M; Shortino D; Klein A; Harris W; Manohitharajah V; Tisdale M; Elston R; Yeo J; Randall S; Xu F; Parker H; May J; Snowden W
    Antimicrob Agents Chemother; 2002 Mar; 46(3):731-8. PubMed ID: 11850255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-cleavage site gag mutations in amprenavir-resistant human immunodeficiency virus type 1 (HIV-1) predispose HIV-1 to rapid acquisition of amprenavir resistance but delay development of resistance to other protease inhibitors.
    Aoki M; Venzon DJ; Koh Y; Aoki-Ogata H; Miyakawa T; Yoshimura K; Maeda K; Mitsuya H
    J Virol; 2009 Apr; 83(7):3059-68. PubMed ID: 19176623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low level of cross-resistance to amprenavir (141W94) in samples from patients pretreated with other protease inhibitors.
    Schmidt B; Korn K; Moschik B; Paatz C; Uberla K; Walter H
    Antimicrob Agents Chemother; 2000 Nov; 44(11):3213-6. PubMed ID: 11036057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and kinetic analyses of the protease from an amprenavir-resistant human immunodeficiency virus type 1 mutant rendered resistant to saquinavir and resensitized to amprenavir.
    Markland W; Rao BG; Parsons JD; Black J; Zuchowski L; Tisdale M; Tung R
    J Virol; 2000 Aug; 74(16):7636-41. PubMed ID: 10906218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenotypic hypersusceptibility to multiple protease inhibitors and low replicative capacity in patients who are chronically infected with human immunodeficiency virus type 1.
    Martinez-Picado J; Wrin T; Frost SD; Clotet B; Ruiz L; Brown AJ; Petropoulos CJ; Parkin NT
    J Virol; 2005 May; 79(10):5907-13. PubMed ID: 15857976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amprenavir-resistant HIV-1 exhibits lopinavir cross-resistance and reduced replication capacity.
    Prado JG; Wrin T; Beauchaine J; Ruiz L; Petropoulos CJ; Frost SD; Clotet B; D'Aquila RT; Martinez-Picado J
    AIDS; 2002 May; 16(7):1009-17. PubMed ID: 11953467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-vitro and in-vivo pharmacokinetic interactions of amprenavir, an HIV protease inhibitor, with other current HIV protease inhibitors in rats.
    Shibata N; Gao W; Okamoto H; Kishida T; Yoshikawa Y; Takada K
    J Pharm Pharmacol; 2002 Feb; 54(2):221-9. PubMed ID: 11848286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prevalence of the HIV protease mutation N88S causing hypersensitivity to amprenavir.
    Gallego O; Corral A; de Mendoza C; Soriano V
    Clin Infect Dis; 2002 May; 34(9):1288-9. PubMed ID: 11941567
    [No Abstract]   [Full Text] [Related]  

  • 13. Amprenavir resistance imparted by the I50V mutation in HIV-1 protease can be suppressed by the N88S mutation.
    Lam E; Parkin NT
    Clin Infect Dis; 2003 Nov; 37(9):1273-4. PubMed ID: 14557976
    [No Abstract]   [Full Text] [Related]  

  • 14. Overcoming drug resistance in HIV-1 chemotherapy: the binding thermodynamics of Amprenavir and TMC-126 to wild-type and drug-resistant mutants of the HIV-1 protease.
    Ohtaka H; Velázquez-Campoy A; Xie D; Freire E
    Protein Sci; 2002 Aug; 11(8):1908-16. PubMed ID: 12142445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro resistance profile of the human immunodeficiency virus type 1 protease inhibitor BMS-232632.
    Gong YF; Robinson BS; Rose RE; Deminie C; Spicer TP; Stock D; Colonno RJ; Lin PF
    Antimicrob Agents Chemother; 2000 Sep; 44(9):2319-26. PubMed ID: 10952574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HIV protease mutations associated with amprenavir resistance during salvage therapy: importance of I54M.
    Murphy MD; Marousek GI; Chou S
    J Clin Virol; 2004 May; 30(1):62-7. PubMed ID: 15072756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and antiviral activity of new anti-HIV amprenavir bioisosteres.
    Rocheblave L; Bihel F; De Michelis C; Priem G; Courcambeck J; Bonnet B; Chermann JC; Kraus JL
    J Med Chem; 2002 Jul; 45(15):3321-4. PubMed ID: 12109915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PL-100, a novel HIV-1 protease inhibitor displaying a high genetic barrier to resistance: an in vitro selection study.
    Dandache S; Coburn CA; Oliveira M; Allison TJ; Holloway MK; Wu JJ; Stranix BR; Panchal C; Wainberg MA; Vacca JP
    J Med Virol; 2008 Dec; 80(12):2053-63. PubMed ID: 19040279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study.
    Leonis G; Steinbrecher T; Papadopoulos MG
    J Chem Inf Model; 2013 Aug; 53(8):2141-53. PubMed ID: 23834142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amprenavir or fosamprenavir plus ritonavir in HIV infection: pharmacology, efficacy and tolerability profile.
    Arvieux C; Tribut O
    Drugs; 2005; 65(5):633-59. PubMed ID: 15748098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.