BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 10756056)

  • 1. A mutation in human immunodeficiency virus type 1 protease, N88S, that causes in vitro hypersensitivity to amprenavir.
    Ziermann R; Limoli K; Das K; Arnold E; Petropoulos CJ; Parkin NT
    J Virol; 2000 May; 74(9):4414-9. PubMed ID: 10756056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human immunodeficiency virus type 1 hypersusceptibility to amprenavir in vitro can be associated with virus load response to treatment in vivo.
    Zachary KC; Hanna GJ; D'Aquila RT
    Clin Infect Dis; 2001 Dec; 33(12):2075-7. PubMed ID: 11700580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nelfinavir-resistant, amprenavir-hypersusceptible strains of human immunodeficiency virus type 1 carrying an N88S mutation in protease have reduced infectivity, reduced replication capacity, and reduced fitness and process the Gag polyprotein precursor aberrantly.
    Resch W; Ziermann R; Parkin N; Gamarnik A; Swanstrom R
    J Virol; 2002 Sep; 76(17):8659-66. PubMed ID: 12163585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of HIV cross-resistance to protease inhibitors using a rapid single-cycle recombinant virus assay for patients failing on combination therapies.
    Race E; Dam E; Obry V; Paulous S; Clavel F
    AIDS; 1999 Oct; 13(15):2061-8. PubMed ID: 10546858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of resistance to protease inhibitor amprenavir in human immunodeficiency virus type 1-infected patients: selection of four alternative viral protease genotypes and influence of viral susceptibility to coadministered reverse transcriptase nucleoside inhibitors.
    Maguire M; Shortino D; Klein A; Harris W; Manohitharajah V; Tisdale M; Elston R; Yeo J; Randall S; Xu F; Parker H; May J; Snowden W
    Antimicrob Agents Chemother; 2002 Mar; 46(3):731-8. PubMed ID: 11850255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-cleavage site gag mutations in amprenavir-resistant human immunodeficiency virus type 1 (HIV-1) predispose HIV-1 to rapid acquisition of amprenavir resistance but delay development of resistance to other protease inhibitors.
    Aoki M; Venzon DJ; Koh Y; Aoki-Ogata H; Miyakawa T; Yoshimura K; Maeda K; Mitsuya H
    J Virol; 2009 Apr; 83(7):3059-68. PubMed ID: 19176623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low level of cross-resistance to amprenavir (141W94) in samples from patients pretreated with other protease inhibitors.
    Schmidt B; Korn K; Moschik B; Paatz C; Uberla K; Walter H
    Antimicrob Agents Chemother; 2000 Nov; 44(11):3213-6. PubMed ID: 11036057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and kinetic analyses of the protease from an amprenavir-resistant human immunodeficiency virus type 1 mutant rendered resistant to saquinavir and resensitized to amprenavir.
    Markland W; Rao BG; Parsons JD; Black J; Zuchowski L; Tisdale M; Tung R
    J Virol; 2000 Aug; 74(16):7636-41. PubMed ID: 10906218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenotypic hypersusceptibility to multiple protease inhibitors and low replicative capacity in patients who are chronically infected with human immunodeficiency virus type 1.
    Martinez-Picado J; Wrin T; Frost SD; Clotet B; Ruiz L; Brown AJ; Petropoulos CJ; Parkin NT
    J Virol; 2005 May; 79(10):5907-13. PubMed ID: 15857976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amprenavir-resistant HIV-1 exhibits lopinavir cross-resistance and reduced replication capacity.
    Prado JG; Wrin T; Beauchaine J; Ruiz L; Petropoulos CJ; Frost SD; Clotet B; D'Aquila RT; Martinez-Picado J
    AIDS; 2002 May; 16(7):1009-17. PubMed ID: 11953467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-vitro and in-vivo pharmacokinetic interactions of amprenavir, an HIV protease inhibitor, with other current HIV protease inhibitors in rats.
    Shibata N; Gao W; Okamoto H; Kishida T; Yoshikawa Y; Takada K
    J Pharm Pharmacol; 2002 Feb; 54(2):221-9. PubMed ID: 11848286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prevalence of the HIV protease mutation N88S causing hypersensitivity to amprenavir.
    Gallego O; Corral A; de Mendoza C; Soriano V
    Clin Infect Dis; 2002 May; 34(9):1288-9. PubMed ID: 11941567
    [No Abstract]   [Full Text] [Related]  

  • 13. Amprenavir resistance imparted by the I50V mutation in HIV-1 protease can be suppressed by the N88S mutation.
    Lam E; Parkin NT
    Clin Infect Dis; 2003 Nov; 37(9):1273-4. PubMed ID: 14557976
    [No Abstract]   [Full Text] [Related]  

  • 14. Overcoming drug resistance in HIV-1 chemotherapy: the binding thermodynamics of Amprenavir and TMC-126 to wild-type and drug-resistant mutants of the HIV-1 protease.
    Ohtaka H; Velázquez-Campoy A; Xie D; Freire E
    Protein Sci; 2002 Aug; 11(8):1908-16. PubMed ID: 12142445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro resistance profile of the human immunodeficiency virus type 1 protease inhibitor BMS-232632.
    Gong YF; Robinson BS; Rose RE; Deminie C; Spicer TP; Stock D; Colonno RJ; Lin PF
    Antimicrob Agents Chemother; 2000 Sep; 44(9):2319-26. PubMed ID: 10952574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. HIV protease mutations associated with amprenavir resistance during salvage therapy: importance of I54M.
    Murphy MD; Marousek GI; Chou S
    J Clin Virol; 2004 May; 30(1):62-7. PubMed ID: 15072756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and antiviral activity of new anti-HIV amprenavir bioisosteres.
    Rocheblave L; Bihel F; De Michelis C; Priem G; Courcambeck J; Bonnet B; Chermann JC; Kraus JL
    J Med Chem; 2002 Jul; 45(15):3321-4. PubMed ID: 12109915
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PL-100, a novel HIV-1 protease inhibitor displaying a high genetic barrier to resistance: an in vitro selection study.
    Dandache S; Coburn CA; Oliveira M; Allison TJ; Holloway MK; Wu JJ; Stranix BR; Panchal C; Wainberg MA; Vacca JP
    J Med Virol; 2008 Dec; 80(12):2053-63. PubMed ID: 19040279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study.
    Leonis G; Steinbrecher T; Papadopoulos MG
    J Chem Inf Model; 2013 Aug; 53(8):2141-53. PubMed ID: 23834142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amprenavir or fosamprenavir plus ritonavir in HIV infection: pharmacology, efficacy and tolerability profile.
    Arvieux C; Tribut O
    Drugs; 2005; 65(5):633-59. PubMed ID: 15748098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.