These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 10756069)

  • 1. Synaptic ultrastructure in nerve terminals of Drosophila larvae overexpressing the learning gene dunce.
    Shayan AJ; Atwood HL
    J Neurobiol; 2000 Apr; 43(1):89-97. PubMed ID: 10756069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drosophila larval neuromuscular junction's responses to reduction of cAMP in the nervous system.
    Cheung US; Shayan AJ; Boulianne GL; Atwood HL
    J Neurobiol; 1999 Jul; 40(1):1-13. PubMed ID: 10398067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of cAMP cascade in synaptic stability and plasticity: ultrastructural and physiological analyses of individual synaptic boutons in Drosophila memory mutants.
    Renger JJ; Ueda A; Atwood HL; Govind CK; Wu CF
    J Neurosci; 2000 Jun; 20(11):3980-92. PubMed ID: 10818133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homeostasis of synaptic transmission in Drosophila with genetically altered nerve terminal morphology.
    Stewart BA; Schuster CM; Goodman CS; Atwood HL
    J Neurosci; 1996 Jun; 16(12):3877-86. PubMed ID: 8656281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic adenosine monophosphate metabolism in synaptic growth, strength, and precision: neural and behavioral phenotype-specific counterbalancing effects between dnc phosphodiesterase and rut adenylyl cyclase mutations.
    Ueda A; Wu CF
    J Neurogenet; 2012 Mar; 26(1):64-81. PubMed ID: 22380612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synaptic plasticity in Drosophila memory and hyperexcitable mutants: role of cAMP cascade.
    Zhong Y; Budnik V; Wu CF
    J Neurosci; 1992 Feb; 12(2):644-51. PubMed ID: 1371316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulated spacing of synapses and presynaptic active zones at larval neuromuscular junctions in different genotypes of the flies Drosophila and Sarcophaga.
    Meinertzhagen IA; Govind CK; Stewart BA; Carter JM; Atwood HL
    J Comp Neurol; 1998 Apr; 393(4):482-92. PubMed ID: 9550153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the ecdysoneless mutant on synaptic efficacy and structure at the neuromuscular junction in Drosophila larvae during normal and prolonged development.
    Li H; Cooper RL
    Neuroscience; 2001; 106(1):193-200. PubMed ID: 11564429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of rut adenylyl cyclase in the ensemble regulation of presynaptic terminal excitability: reduced synaptic strength and precision in a Drosophila memory mutant.
    Ueda A; Wu CF
    J Neurogenet; 2009; 23(1-2):185-99. PubMed ID: 19101836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic structural complexity as a factor enhancing probability of calcium-mediated transmitter release.
    Cooper RL; Winslow JL; Govind CK; Atwood HL
    J Neurophysiol; 1996 Jun; 75(6):2451-66. PubMed ID: 8793756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered synaptic development and active zone spacing in endocytosis mutants.
    Dickman DK; Lu Z; Meinertzhagen IA; Schwarz TL
    Curr Biol; 2006 Mar; 16(6):591-8. PubMed ID: 16546084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered synaptic plasticity in Drosophila memory mutants with a defective cyclic AMP cascade.
    Zhong Y; Wu CF
    Science; 1991 Jan; 251(4990):198-201. PubMed ID: 1670967
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Remodeling of Active Zones Is Associated with Synaptic Homeostasis.
    Hong H; Zhao K; Huang S; Huang S; Yao A; Jiang Y; Sigrist S; Zhao L; Zhang YQ
    J Neurosci; 2020 Apr; 40(14):2817-2827. PubMed ID: 32122953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurotransmitter levels and synaptic strength at the Drosophila larval neuromuscular junction are not altered by mutation in the sluggish-A gene, which encodes proline oxidase and affects adult locomotion.
    Shayan AJ; Brodin L; Ottersen OP; Birinyi A; Hill CE; Govind CK; Atwood HL; Shupliakov O
    J Neurogenet; 2000 Sep; 14(3):165-92. PubMed ID: 10992167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Drosophila-Cdh1 (Rap/Fzr) a regulatory subunit of APC/C is required for synaptic morphology, synaptic transmission and locomotion.
    Wise A; Schatoff E; Flores J; Hua SY; Ueda A; Wu CF; Venkatesh T
    Int J Dev Neurosci; 2013 Nov; 31(7):624-33. PubMed ID: 23933137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dichotomy in phasic-tonic neuromuscular structure of crayfish inhibitory axons.
    Kirk MD; Meyer JS; Miller MW; Govind CK
    J Comp Neurol; 2001 Jul; 435(3):283-90. PubMed ID: 11406812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential ultrastructure of synaptic terminals on ventral longitudinal abdominal muscles in Drosophila larvae.
    Atwood HL; Govind CK; Wu CF
    J Neurobiol; 1993 Aug; 24(8):1008-24. PubMed ID: 8409966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic dissection of structural and functional components of synaptic plasticity. III. CREB is necessary for presynaptic functional plasticity.
    Davis GW; Schuster CM; Goodman CS
    Neuron; 1996 Oct; 17(4):669-79. PubMed ID: 8893024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SSB, an antigen that selectively labels morphologically distinct synaptic boutons at the Drosophila larval neuromuscular junction.
    Budnik V; Gorczyca M
    J Neurobiol; 1992 Oct; 23(8):1054-65. PubMed ID: 1460464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of synaptic development and ultrastructure by Drosophila NSF2 alleles.
    Stewart BA; Pearce J; Bajec M; Khorana R
    J Comp Neurol; 2005 Jul; 488(1):101-11. PubMed ID: 15912502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.