These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 10757460)

  • 1. Internal desynchronization of the circadian activity and feeding rhythm in an owl monkey (Aotus lemurinus griseimembra): a case study.
    Erkert HG
    Chronobiol Int; 2000 Mar; 17(2):147-53. PubMed ID: 10757460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significance of nonparametric light effects in entrainment of circadian rhythms in owl monkeys (Aotus lemurinus griseimembra) by light-dark cycles.
    Rauth-Widmann B; Thiemann-Jäger A; Erkert HG
    Chronobiol Int; 1991; 8(4):251-66. PubMed ID: 1797415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infradian alteration of circadian rhythms in owl monkeys (Aotus lemurinus griseimembra): an effect of estrous?
    Rauth-Widmann B; Fuchs E; Erkert HG
    Physiol Behav; 1996 Jan; 59(1):11-8. PubMed ID: 8848469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Food-entrained feeding and locomotor circadian rhythms in rats under different lighting conditions.
    Lax P; Zamora S; Madrid JA
    Chronobiol Int; 1999 May; 16(3):281-91. PubMed ID: 10373098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of light, food, and methamphetamine on the circadian activity rhythm in mice.
    Pendergast JS; Yamazaki S
    Physiol Behav; 2014 Apr; 128():92-8. PubMed ID: 24530262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Daily restricted feeding effects on the circadian activity rhythms of the stripe-faced dunnart, Sminthopsis macroura.
    Kennedy GA; Coleman GJ; Armstrong SM
    J Biol Rhythms; 1996 Sep; 11(3):188-95. PubMed ID: 8872591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Food- and light-entrainable oscillators control feeding and locomotor activity rhythms, respectively, in the Japanese catfish, Plotosus japonicus.
    Kasai M; Kiyohara S
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 Dec; 196(12):901-12. PubMed ID: 20725728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forced dissociation of food- and light- entrainable circadian rhythms of rats in a skeleton photoperiod.
    Brinkhof MW; Daan S; Strubbe JH
    Physiol Behav; 1998 Nov; 65(2):225-31. PubMed ID: 9855470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonal variation of temporal niche in wild owl monkeys (Aotus azarai azarai) of the Argentinean Chaco: a matter of masking?
    Erkert HG; Fernandez-Duque E; Rotundo M; Scheideler A
    Chronobiol Int; 2012 Jul; 29(6):702-14. PubMed ID: 22734571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Memory for feeding time: possible dependence on coupled circadian oscillators.
    Rosenwasser AM; Pelchat RJ; Adler NT
    Physiol Behav; 1984 Jan; 32(1):25-30. PubMed ID: 6718530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circadian rhythms of drinking and body temperature of the owl monkey (Aotus trivirgatus).
    Hoban TM; Levine AH; Shane RB; Sulzman FM
    Physiol Behav; 1985 Apr; 34(4):513-8. PubMed ID: 4011731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forced desynchronization model for a diurnal primate.
    Silva CA; Melo LIM; Pires AR; Barbalho JC; Melo AV; Fernandes DAC; Oliveira EB; Azevedo CVM; Cambras T; Díez-Noguera A; Fontenele-Araujo J
    Chronobiol Int; 2018 Jan; 35(1):35-48. PubMed ID: 29211510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonphotic entrainment of circadian activity rhythms in suprachiasmatic nuclei-ablated hamsters.
    Mistlberger RE
    Behav Neurosci; 1992 Feb; 106(1):192-202. PubMed ID: 1554431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circadian rhythms of rabbits during restrictive feeding.
    Jilge B; Hörnicke H; Stähle H
    Am J Physiol; 1987 Jul; 253(1 Pt 2):R46-54. PubMed ID: 3605390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Food as a circadian Zeitgeber for house sparrows: the effect of different food access durations.
    Hau M; Gwinner E
    J Biol Rhythms; 1996 Sep; 11(3):196-207. PubMed ID: 8872592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct modulation of activity and body temperature of owl monkeys (Aotus lemurinus griseimembra) by low light intensities.
    Erkert HG; Gröber J
    Folia Primatol (Basel); 1986; 47(4):171-88. PubMed ID: 3609970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics of food-entrained circadian rhythms in rats during long-term exposure to constant light.
    Mistlberger RE; Houpt TA; Moore-Ede MC
    Chronobiol Int; 1990; 7(5-6):383-91. PubMed ID: 2097071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata).
    Vera LM; Negrini P; Zagatti C; Frigato E; Sánchez-Vázquez FJ; Bertolucci C
    Chronobiol Int; 2013 Jun; 30(5):649-61. PubMed ID: 23688119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Food-entrained circadian rhythms in rats are insensitive to deuterium oxide.
    Mistlberger RE; Marchant EG; Kippin TE
    Brain Res; 2001 Nov; 919(2):283-91. PubMed ID: 11701140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction between light- and feeding-entrainable circadian rhythms in the rat.
    Stephan FK
    Physiol Behav; 1986; 38(1):127-33. PubMed ID: 3786492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.