These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 10757748)

  • 1. Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria.
    Levin BR; Perrot V; Walker N
    Genetics; 2000 Mar; 154(3):985-97. PubMed ID: 10757748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compensatory adaptation to the deleterious effect of antibiotic resistance in Salmonella typhimurium.
    Maisnier-Patin S; Berg OG; Liljas L; Andersson DI
    Mol Microbiol; 2002 Oct; 46(2):355-66. PubMed ID: 12406214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation to the fitness costs of antibiotic resistance in Escherichia coli.
    Schrag SJ; Perrot V; Levin BR
    Proc Biol Sci; 1997 Sep; 264(1386):1287-91. PubMed ID: 9332013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multidrug-resistant bacteria compensate for the epistasis between resistances.
    Moura de Sousa J; Balbontín R; Durão P; Gordo I
    PLoS Biol; 2017 Apr; 15(4):e2001741. PubMed ID: 28419091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance.
    Björkman J; Nagaev I; Berg OG; Hughes D; Andersson DI
    Science; 2000 Feb; 287(5457):1479-82. PubMed ID: 10688795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of the fitness impacts on Escherichia coli of acquisition of antibiotic resistance genes encoded by different types of genetic element.
    Enne VI; Delsol AA; Davis GR; Hayward SL; Roe JM; Bennett PM
    J Antimicrob Chemother; 2005 Sep; 56(3):544-51. PubMed ID: 16040624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compensatory evolution in rifampin-resistant Escherichia coli.
    Reynolds MG
    Genetics; 2000 Dec; 156(4):1471-81. PubMed ID: 11102350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cost of antibiotic resistance and the geometry of adaptation.
    Sousa A; Magalhães S; Gordo I
    Mol Biol Evol; 2012 May; 29(5):1417-28. PubMed ID: 22144641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The contribution of common rpsL mutations in Escherichia coli to sensitivity to ribosome targeting antibiotics.
    Pelchovich G; Schreiber R; Zhuravlev A; Gophna U
    Int J Med Microbiol; 2013 Dec; 303(8):558-62. PubMed ID: 23972615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth rate effects of mutations conferring streptomycin-dependence and of ancillary mutations in the rpsL gene of Escherichia coli: implications for the clustering (hypermutation) hypothesis for spontaneous mutation.
    Timms AR; Dewan KK; Bridges BA
    Mutagenesis; 1995 Sep; 10(5):463-6. PubMed ID: 8544763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fitness cost of chromosomal drug resistance-conferring mutations.
    Sander P; Springer B; Prammananan T; Sturmfels A; Kappler M; Pletschette M; Böttger EC
    Antimicrob Agents Chemother; 2002 May; 46(5):1204-11. PubMed ID: 11959546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fitness of antibiotic-resistant microorganisms and compensatory mutations.
    Böttger EC; Springer B; Pletschette M; Sander P
    Nat Med; 1998 Dec; 4(12):1343-4. PubMed ID: 9846553
    [No Abstract]   [Full Text] [Related]  

  • 13. Amelioration of the Fitness Costs of Antibiotic Resistance Due To Reduced Outer Membrane Permeability by Upregulation of Alternative Porins.
    Knopp M; Andersson DI
    Mol Biol Evol; 2015 Dec; 32(12):3252-63. PubMed ID: 26358402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in Intrinsic Antibiotic Susceptibility during a Long-Term Evolution Experiment with Escherichia coli.
    Lamrabet O; Martin M; Lenski RE; Schneider D
    mBio; 2019 Mar; 10(2):. PubMed ID: 30837336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid decline of bacterial drug-resistance in an antibiotic-free environment through phenotypic reversion.
    Dunai A; Spohn R; Farkas Z; Lázár V; Györkei Á; Apjok G; Boross G; Szappanos B; Grézal G; Faragó A; Bodai L; Papp B; Pál C
    Elife; 2019 Aug; 8():. PubMed ID: 31418687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutant sequences in the rpsL gene of Escherichia coli B/r: mechanistic implications for spontaneous and ultraviolet light mutagenesis.
    Timms AR; Steingrimsdottir H; Lehmann AR; Bridges BA
    Mol Gen Genet; 1992 Mar; 232(1):89-96. PubMed ID: 1552908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance.
    Chevereau G; Dravecká M; Batur T; Guvenek A; Ayhan DH; Toprak E; Bollenbach T
    PLoS Biol; 2015; 13(11):e1002299. PubMed ID: 26581035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cost of antibiotic resistance depends on evolutionary history in Escherichia coli.
    Angst DC; Hall AR
    BMC Evol Biol; 2013 Aug; 13():163. PubMed ID: 23914906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversion is most likely under high mutation supply when compensatory mutations do not fully restore fitness costs.
    Pennings PS; Ogbunugafor CB; Hershberg R
    G3 (Bethesda); 2022 Aug; 12(9):. PubMed ID: 35920784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of Resistance to Continuously Increasing Streptomycin Concentrations in Populations of Escherichia coli.
    Spagnolo F; Rinaldi C; Sajorda DR; Dykhuizen DE
    Antimicrob Agents Chemother; 2015 Dec; 60(3):1336-42. PubMed ID: 26666944
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.