These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

405 related articles for article (PubMed ID: 10757748)

  • 21. Evolution of Resistance to Continuously Increasing Streptomycin Concentrations in Populations of Escherichia coli.
    Spagnolo F; Rinaldi C; Sajorda DR; Dykhuizen DE
    Antimicrob Agents Chemother; 2015 Dec; 60(3):1336-42. PubMed ID: 26666944
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fitness Tradeoffs of Antibiotic Resistance in Extraintestinal Pathogenic Escherichia coli.
    Basra P; Alsaadi A; Bernal-Astrain G; O'Sullivan ML; Hazlett B; Clarke LM; Schoenrock A; Pitre S; Wong A
    Genome Biol Evol; 2018 Feb; 10(2):667-679. PubMed ID: 29432584
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evolutionary Mechanisms Shaping the Maintenance of Antibiotic Resistance.
    Durão P; Balbontín R; Gordo I
    Trends Microbiol; 2018 Aug; 26(8):677-691. PubMed ID: 29439838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Small changes in enzyme function can lead to surprisingly large fitness effects during adaptive evolution of antibiotic resistance.
    Walkiewicz K; Benitez Cardenas AS; Sun C; Bacorn C; Saxer G; Shamoo Y
    Proc Natl Acad Sci U S A; 2012 Dec; 109(52):21408-13. PubMed ID: 23236139
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Compensatory evolution reveals functional interactions between ribosomal proteins S12, L14 and L19.
    Maisnier-Patin S; Paulander W; Pennhag A; Andersson DI
    J Mol Biol; 2007 Feb; 366(1):207-15. PubMed ID: 17157877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Host mutations (miaA and rpsL) reduce tetracycline resistance mediated by Tet(O) and Tet(M).
    Taylor DE; Trieber CA; Trescher G; Bekkering M
    Antimicrob Agents Chemother; 1998 Jan; 42(1):59-64. PubMed ID: 9449261
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic antagonism and hypermutability in Mycobacterium smegmatis.
    Karunakaran P; Davies J
    J Bacteriol; 2000 Jun; 182(12):3331-5. PubMed ID: 10852861
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel ribosomal mutations affecting translational accuracy, antibiotic resistance and virulence of Salmonella typhimurium.
    Björkman J; Samuelsson P; Andersson DI; Hughes D
    Mol Microbiol; 1999 Jan; 31(1):53-8. PubMed ID: 9987109
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution of high-level resistance during low-level antibiotic exposure.
    Wistrand-Yuen E; Knopp M; Hjort K; Koskiniemi S; Berg OG; Andersson DI
    Nat Commun; 2018 Apr; 9(1):1599. PubMed ID: 29686259
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chloramphenicol resistance mutation in Escherichia coli which maps in the major ribosomal protein gene cluster.
    Baughman GA; Fahnestock SR
    J Bacteriol; 1979 Mar; 137(3):1315-23. PubMed ID: 374348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Novel host-vector system for selection and maintenance of plasmid-bearing, streptomycin-dependent Escherichia coli cells in antibiotic-free media.
    Miwa K; Nakamori S; Sano K; Momose H
    Gene; 1984 Nov; 31(1-3):275-7. PubMed ID: 6098532
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reducing antibiotic resistance.
    Schrag SJ; Perrot V
    Nature; 1996 May; 381(6578):120-1. PubMed ID: 8610008
    [No Abstract]   [Full Text] [Related]  

  • 33. Multiple Resistance at No Cost: Rifampicin and Streptomycin a Dangerous Liaison in the Spread of Antibiotic Resistance.
    Durão P; Trindade S; Sousa A; Gordo I
    Mol Biol Evol; 2015 Oct; 32(10):2675-80. PubMed ID: 26130082
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adaptation Through Lifestyle Switching Sculpts the Fitness Landscape of Evolving Populations: Implications for the Selection of Drug-Resistant Bacteria at Low Drug Pressures.
    Matange N; Hegde S; Bodkhe S
    Genetics; 2019 Mar; 211(3):1029-1044. PubMed ID: 30670539
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Escaping an evolutionary lobster trap: drug resistance and compensatory mutation in a fluctuating environment.
    Tanaka MM; Valckenborgh F
    Evolution; 2011 May; 65(5):1376-87. PubMed ID: 21521192
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Compensating the Fitness Costs of Synonymous Mutations.
    Knöppel A; Näsvall J; Andersson DI
    Mol Biol Evol; 2016 Jun; 33(6):1461-77. PubMed ID: 26882986
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolutionary reversals of antibiotic resistance in experimental populations of Pseudomonas aeruginosa.
    Gifford DR; MacLean RC
    Evolution; 2013 Oct; 67(10):2973-81. PubMed ID: 24094347
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Using long-term experimental evolution to uncover the patterns and determinants of molecular evolution of an Escherichia coli natural isolate in the streptomycin-treated mouse gut.
    Lescat M; Launay A; Ghalayini M; Magnan M; Glodt J; Pintard C; Dion S; Denamur E; Tenaillon O
    Mol Ecol; 2017 Apr; 26(7):1802-1817. PubMed ID: 27661780
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Empirical fitness landscapes and the predictability of evolution.
    de Visser JA; Krug J
    Nat Rev Genet; 2014 Jul; 15(7):480-90. PubMed ID: 24913663
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modelling in Escherichia coli of mutations in mitoribosomal protein S12: novel mutant phenotypes of rpsL.
    Toivonen JM; Boocock MR; Jacobs HT
    Mol Microbiol; 1999 Mar; 31(6):1735-46. PubMed ID: 10209746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.