BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 10758000)

  • 1. Efflux of cholesterol from different cellular pools.
    Haynes MP; Phillips MC; Rothblat GH
    Biochemistry; 2000 Apr; 39(15):4508-17. PubMed ID: 10758000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of sphingomyelin and phosphatidylcholine degradation on cyclodextrin-mediated cholesterol efflux in cultured fibroblasts.
    Ohvo H; Olsio C; Slotte JP
    Biochim Biophys Acta; 1997 Nov; 1349(2):131-41. PubMed ID: 9421186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholesterol metabolism and efflux in human THP-1 macrophages.
    Kritharides L; Christian A; Stoudt G; Morel D; Rothblat GH
    Arterioscler Thromb Vasc Biol; 1998 Oct; 18(10):1589-99. PubMed ID: 9763531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apolipoprotein A-1 interaction with plasma membrane lipid rafts controls cholesterol export from macrophages.
    Gaus K; Kritharides L; Schmitz G; Boettcher A; Drobnik W; Langmann T; Quinn CM; Death A; Dean RT; Jessup W
    FASEB J; 2004 Mar; 18(3):574-6. PubMed ID: 14734645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellular cholesterol efflux mediated by cyclodextrins. Demonstration Of kinetic pools and mechanism of efflux.
    Yancey PG; Rodrigueza WV; Kilsdonk EP; Stoudt GW; Johnson WJ; Phillips MC; Rothblat GH
    J Biol Chem; 1996 Jul; 271(27):16026-34. PubMed ID: 8663188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of scavenger receptor BI in COS-7 cells alters cholesterol content and distribution.
    Kellner-Weibel G; de La Llera-Moya M; Connelly MA; Stoudt G; Christian AE; Haynes MP; Williams DL; Rothblat GH
    Biochemistry; 2000 Jan; 39(1):221-9. PubMed ID: 10625497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of sphingomyelin level without accumulation of ceramide in Chinese hamster ovary cells affects detergent-resistant membrane domains and enhances cellular cholesterol efflux to methyl-beta -cyclodextrin.
    Fukasawa M; Nishijima M; Itabe H; Takano T; Hanada K
    J Biol Chem; 2000 Nov; 275(44):34028-34. PubMed ID: 10930414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma membrane cholesterol: a critical determinant of cellular energetics and tubular resistance to attack.
    Zager RA
    Kidney Int; 2000 Jul; 58(1):193-205. PubMed ID: 10886564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxypropyl-beta-cyclodextrin-mediated efflux of 7-ketocholesterol from macrophage foam cells.
    Kritharides L; Kus M; Brown AJ; Jessup W; Dean RT
    J Biol Chem; 1996 Nov; 271(44):27450-5. PubMed ID: 8910326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid turn-over of plasma membrane sphingomyelin and cholesterol in baby hamster kidney cells after exposure to sphingomyelinase.
    Slotte JP; Härmälä AS; Jansson C; Pörn MI
    Biochim Biophys Acta; 1990 Dec; 1030(2):251-7. PubMed ID: 2261487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta-cyclodextrin facilitates cholesterol efflux from larval Manduca sexta fat body and midgut in vitro.
    Jouni ZE; McGill B; Wells MA
    Comp Biochem Physiol B Biochem Mol Biol; 2002 Aug; 132(4):699-709. PubMed ID: 12128056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the cell swelling-activated chloride conductance by cholesterol-rich membrane domains.
    Lim CH; Schoonderwoerd K; Kleijer WJ; de Jonge HR; Tilly BC
    Acta Physiol (Oxf); 2006; 187(1-2):295-303. PubMed ID: 16734766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential effects of sphingomyelin hydrolysis and cholesterol transport on oxysterol-binding protein phosphorylation and Golgi localization.
    Ridgway ND; Lagace TA; Cook HW; Byers DM
    J Biol Chem; 1998 Nov; 273(47):31621-8. PubMed ID: 9813079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular trafficking of cholesterol monitored with a cyclodextrin.
    Neufeld EB; Cooney AM; Pitha J; Dawidowicz EA; Dwyer NK; Pentchev PG; Blanchette-Mackie EJ
    J Biol Chem; 1996 Aug; 271(35):21604-13. PubMed ID: 8702948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cellular cholesterol efflux. Role of cell membrane kinetic pools and interaction with apolipoproteins AI, AII, and Cs.
    Mahlberg FH; Rothblat GH
    J Biol Chem; 1992 Mar; 267(7):4541-50. PubMed ID: 1537840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics and size of cholesterol lateral domains in synaptosomal membranes: modification by sphingomyelinase and effects on membrane enzyme activity.
    Rao AM; Igbavboa U; Semotuk M; Schroeder F; Wood WG
    Neurochem Int; 1993 Jul; 23(1):45-52. PubMed ID: 8396483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cell culturing in a three-dimensional matrix affects the localization and properties of plasma membrane cholesterol.
    Stefanova N; Staneva G; Petkova D; Lupanova T; Pankov R; Momchilova A
    Cell Biol Int; 2009 Oct; 33(10):1079-86. PubMed ID: 19589391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid efflux mediated by alkylphospholipids in HepG2 cells.
    Ríos-Marco P; Segovia JL; Jiménez-López JM; Marco C; Carrasco MP
    Cell Biochem Biophys; 2013 Jul; 66(3):737-46. PubMed ID: 23397419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential regulation of apolipoprotein A-I/ATP binding cassette transporter A1-mediated cholesterol and phospholipid release.
    Yamauchi Y; Abe-Dohmae S; Yokoyama S
    Biochim Biophys Acta; 2002 Nov; 1585(1):1-10. PubMed ID: 12457709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of plasma membrane phosphatidylcholine appears not to affect the cellular cholesterol distribution.
    Pörn MI; Ares MP; Slotte JP
    J Lipid Res; 1993 Aug; 34(8):1385-92. PubMed ID: 8409769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.