BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 10758114)

  • 21. Hippocampal inhibitory neuron activity in the elevated potassium model of epilepsy.
    McBain CJ
    J Neurophysiol; 1994 Dec; 72(6):2853-63. PubMed ID: 7897494
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hippocampal inhibitory neuron activity in the elevated potassium model of epilepsy.
    McBain CJ
    J Neurophysiol; 1995 Feb; 73(2):2853-63. PubMed ID: 7760109
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrophysiological recordings from rat hippocampus slices following in vivo brain ischemia.
    Jensen MS; Lambert JD; Johansen FF
    Brain Res; 1991 Jul; 554(1-2):166-75. PubMed ID: 1657285
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physiology and pharmacology of unitary synaptic connections between pairs of cells in areas CA3 and CA1 of rat hippocampal slice cultures.
    Debanne D; Guérineau NC; Gähwiler BH; Thompson SM
    J Neurophysiol; 1995 Mar; 73(3):1282-94. PubMed ID: 7608771
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Somatostatin acts in CA1 and CA3 to reduce hippocampal epileptiform activity.
    Tallent MK; Siggins GR
    J Neurophysiol; 1999 Apr; 81(4):1626-35. PubMed ID: 10200199
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spontaneous and stimulation-induced synchronized burst afterdischarges in the isolated CA1 of kainate-treated rats.
    Meier CL; Dudek FE
    J Neurophysiol; 1996 Oct; 76(4):2231-9. PubMed ID: 8899598
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Limbic gamma rhythms. II. Synaptic and intrinsic mechanisms underlying spike doublets in oscillating subicular neurons.
    Stanford IM; Traub RD; Jefferys JG
    J Neurophysiol; 1998 Jul; 80(1):162-71. PubMed ID: 9658038
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms underlying the enhancement of excitatory synaptic transmission in basolateral amygdala neurons of the kindling rat.
    Shoji Y; Tanaka E; Yamamoto S; Maeda H; Higashi H
    J Neurophysiol; 1998 Aug; 80(2):638-46. PubMed ID: 9705457
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synaptic activation of mGluR1 generates persistent depression of a fast after-depolarizing potential in CA3 pyramidal neurons.
    Brown JT; Booth CA; Randall AD
    Eur J Neurosci; 2011 Mar; 33(5):879-89. PubMed ID: 21269340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dual-component miniature excitatory synaptic currents in rat hippocampal CA3 pyramidal neurons.
    McBain C; Dingledine R
    J Neurophysiol; 1992 Jul; 68(1):16-27. PubMed ID: 1355525
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Laminar differences in recurrent excitatory transmission in the rat entorhinal cortex in vitro.
    Dhillon A; Jones RS
    Neuroscience; 2000; 99(3):413-22. PubMed ID: 11029534
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sharp wave-like activity in the hippocampus in vitro in mice lacking the gap junction protein connexin 36.
    Pais I; Hormuzdi SG; Monyer H; Traub RD; Wood IC; Buhl EH; Whittington MA; LeBeau FE
    J Neurophysiol; 2003 Apr; 89(4):2046-54. PubMed ID: 12686578
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of EPSPs in initiation of spontaneous synchronized burst firing in rat hippocampal neurons bathed in high potassium.
    Chamberlin NL; Traub RD; Dingledine R
    J Neurophysiol; 1990 Sep; 64(3):1000-8. PubMed ID: 1977893
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced excitatory synaptic network activity following transient group I metabotropic glutamate activation.
    Pan YZ; Rutecki PA
    Neuroscience; 2014 Sep; 275():22-32. PubMed ID: 24928353
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Postnatal development of intrinsic GABAergic rhythms in mouse hippocampus.
    Wong T; Zhang XL; Asl MN; Wu CP; Carlen PL; Zhang L
    Neuroscience; 2005; 134(1):107-20. PubMed ID: 15961234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Seizure-like events in disinhibited ventral slices of adult rat hippocampus.
    Borck C; Jefferys JG
    J Neurophysiol; 1999 Nov; 82(5):2130-42. PubMed ID: 10561393
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses.
    Kakegawa W; Tsuzuki K; Yoshida Y; Kameyama K; Ozawa S
    Eur J Neurosci; 2004 Jul; 20(1):101-10. PubMed ID: 15245483
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transient neurophysiological changes in CA3 neurons and dentate granule cells after severe forebrain ischemia in vivo.
    Gao TM; Howard EM; Xu ZC
    J Neurophysiol; 1998 Dec; 80(6):2860-9. PubMed ID: 9862890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Residual granule cells can maintain susceptibility of CA3 pyramidal cells to kainate-induced epileptiform discharges.
    Czéh B; Seress L; Czéh G
    Hippocampus; 1998; 8(5):548-61. PubMed ID: 9825964
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy.
    Jensen MS; Yaari Y
    J Neurophysiol; 1997 Mar; 77(3):1224-33. PubMed ID: 9084592
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.