BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 10759586)

  • 1. Metabolic modulation of sympathetic vasoconstriction in exercising skeletal muscle.
    Hansen J; Sander M; Thomas GD
    Acta Physiol Scand; 2000 Apr; 168(4):489-503. PubMed ID: 10759586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noninvasive assessment of sympathetic vasoconstriction in human and rodent skeletal muscle using near-infrared spectroscopy and Doppler ultrasound.
    Fadel PJ; Keller DM; Watanabe H; Raven PB; Thomas GD
    J Appl Physiol (1985); 2004 Apr; 96(4):1323-30. PubMed ID: 14657045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The paradox of sympathetic vasoconstriction in exercising skeletal muscle.
    Buckwalter JB; Clifford PS
    Exerc Sport Sci Rev; 2001 Oct; 29(4):159-63. PubMed ID: 11688788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional sympatholysis in hypertension.
    Thomas GD
    Auton Neurosci; 2015 Mar; 188():64-8. PubMed ID: 25458424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adrenergic and non-adrenergic control of active skeletal muscle blood flow: implications for blood pressure regulation during exercise.
    Holwerda SW; Restaino RM; Fadel PJ
    Auton Neurosci; 2015 Mar; 188():24-31. PubMed ID: 25467222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal muscle blood flow in humans and its regulation during exercise.
    Saltin B; Rådegran G; Koskolou MD; Roach RC
    Acta Physiol Scand; 1998 Mar; 162(3):421-36. PubMed ID: 9578388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrative control of the skeletal muscle microcirculation in the maintenance of arterial pressure during exercise.
    Delp MD; O'Leary DS
    J Appl Physiol (1985); 2004 Sep; 97(3):1112-8. PubMed ID: 15333629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nitric oxide-dependent modulation of sympathetic neural control of oxygenation in exercising human skeletal muscle.
    Chavoshan B; Sander M; Sybert TE; Hansen J; Victor RG; Thomas GD
    J Physiol; 2002 Apr; 540(Pt 1):377-86. PubMed ID: 11927694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effect of sympathetic activation on tissue oxygenation in gastrocnemius and soleus muscles during exercise in humans.
    Horiuchi M; Fadel PJ; Ogoh S
    Exp Physiol; 2014 Feb; 99(2):348-58. PubMed ID: 24163424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural control of muscle blood flow during exercise.
    Thomas GD; Segal SS
    J Appl Physiol (1985); 2004 Aug; 97(2):731-8. PubMed ID: 15247201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic modulation of sympathetic vasoconstriction in human skeletal muscle: role of tissue hypoxia.
    Hansen J; Sander M; Hald CF; Victor RG; Thomas GD
    J Physiol; 2000 Sep; 527 Pt 2(Pt 2):387-96. PubMed ID: 10970439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of ATP/UTP-selective receptors increases blood flow and blunts sympathetic vasoconstriction in human skeletal muscle.
    Rosenmeier JB; Yegutkin GG; González-Alonso J
    J Physiol; 2008 Oct; 586(20):4993-5002. PubMed ID: 18703581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired modulation of sympathetic vasoconstriction in contracting skeletal muscle of rats with chronic myocardial infarctions: role of oxidative stress.
    Thomas GD; Zhang W; Victor RG
    Circ Res; 2001 Apr; 88(8):816-23. PubMed ID: 11325874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Augmentation of endothelium-dependent vasodilatory signalling improves functional sympatholysis in contracting muscle of older adults.
    Hearon CM; Richards JC; Racine ML; Luckasen GJ; Larson DG; Dinenno FA
    J Physiol; 2020 Jun; 598(12):2323-2336. PubMed ID: 32306393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP-sensitive potassium channels mediate contraction-induced attenuation of sympathetic vasoconstriction in rat skeletal muscle.
    Thomas GD; Hansen J; Victor RG
    J Clin Invest; 1997 Jun; 99(11):2602-9. PubMed ID: 9169489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential activation of sympathetic discharge to skin and skeletal muscle in humans.
    Vissing SF
    Acta Physiol Scand Suppl; 1997; 639():1-32. PubMed ID: 9421582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sympathetic vasoconstriction in active skeletal muscles during dynamic exercise.
    Buckwalter JB; Mueller PJ; Clifford PS
    J Appl Physiol (1985); 1997 Nov; 83(5):1575-80. PubMed ID: 9375322
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of skeletal muscle blood flow during exercise in ageing humans.
    Hearon CM; Dinenno FA
    J Physiol; 2016 Apr; 594(8):2261-73. PubMed ID: 26332887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vasodilation and vascular control in contracting muscle of the aging human.
    Proctor DN; Parker BA
    Microcirculation; 2006 Jun; 13(4):315-27. PubMed ID: 16611597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Augmented sympathetic vasoconstriction in exercising forearms of postmenopausal women is reversed by oestrogen therapy.
    Fadel PJ; Wang Z; Watanabe H; Arbique D; Vongpatanasin W; Thomas GD
    J Physiol; 2004 Dec; 561(Pt 3):893-901. PubMed ID: 15498809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.