BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 10759602)

  • 1. Anaplerosis of the citric acid cycle: role in energy metabolism of heart and skeletal muscle.
    Gibala MJ; Young ME; Taegtmeyer H
    Acta Physiol Scand; 2000 Apr; 168(4):657-65. PubMed ID: 10759602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle amino acid metabolism at rest and during exercise: role in human physiology and metabolism.
    Wagenmakers AJ
    Exerc Sport Sci Rev; 1998; 26():287-314. PubMed ID: 9696993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tricarboxylic acid cycle intermediate pool size: functional importance for oxidative metabolism in exercising human skeletal muscle.
    Bowtell JL; Marwood S; Bruce M; Constantin-Teodosiu D; Greenhaff PL
    Sports Med; 2007; 37(12):1071-88. PubMed ID: 18027994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutamate availability is important in intramuscular amino acid metabolism and TCA cycle intermediates but does not affect peak oxidative metabolism.
    Mourtzakis M; Graham TE; González-Alonso J; Saltin B
    J Appl Physiol (1985); 2008 Aug; 105(2):547-54. PubMed ID: 18511521
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamate synthesis has to be matched by its degradation - where do all the carbons go?
    Sonnewald U
    J Neurochem; 2014 Nov; 131(4):399-406. PubMed ID: 24989463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exercise with low muscle glycogen augments TCA cycle anaplerosis but impairs oxidative energy provision in humans.
    Gibala MJ; Peirce N; Constantin-Teodosiu D; Greenhaff PL
    J Physiol; 2002 May; 540(Pt 3):1079-86. PubMed ID: 11986392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The tricarboxylic acid cycle in human skeletal muscle: is there a role for nutritional intervention?
    Constantin-Teodosiu D; Greenhaff PL
    Curr Opin Clin Nutr Metab Care; 1999 Nov; 2(6):527-31. PubMed ID: 10678684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remodeling of substrate consumption in the murine sTAC model of heart failure.
    Turer A; Altamirano F; Schiattarella GG; May H; Gillette TG; Malloy CR; Merritt ME
    J Mol Cell Cardiol; 2019 Sep; 134():144-153. PubMed ID: 31340162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The importance of pyruvate availability to PDC activation and anaplerosis in human skeletal muscle.
    Constantin-Teodosiu D; Simpson EJ; Greenhaff PL
    Am J Physiol; 1999 Mar; 276(3):E472-8. PubMed ID: 10070012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative assessment of anaplerosis from propionate in pig heart in vivo.
    Martini WZ; Stanley WC; Huang H; Rosiers CD; Hoppel CL; Brunengraber H
    Am J Physiol Endocrinol Metab; 2003 Feb; 284(2):E351-6. PubMed ID: 12388135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An acute decrease in TCA cycle intermediates does not affect aerobic energy delivery in contracting rat skeletal muscle.
    Dawson KD; Baker DJ; Greenhaff PL; Gibala MJ
    J Physiol; 2005 Jun; 565(Pt 2):637-43. PubMed ID: 15802296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glutamine: an anaplerotic precursor.
    Bowtell JL; Bruce M
    Nutrition; 2002 Mar; 18(3):222-4. PubMed ID: 11882393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy depletion in seizures: anaplerosis as a strategy for future therapies.
    Kovac S; Abramov AY; Walker MC
    Neuropharmacology; 2013 Jun; 69():96-104. PubMed ID: 22659085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts.
    Sorokina N; O'Donnell JM; McKinney RD; Pound KM; Woldegiorgis G; LaNoue KF; Ballal K; Taegtmeyer H; Buttrick PM; Lewandowski ED
    Circulation; 2007 Apr; 115(15):2033-41. PubMed ID: 17404155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myoadenylate deaminase deficiency does not affect muscle anaplerosis during exhaustive exercise in humans.
    Tarnopolsky MA; Parise G; Gibala MJ; Graham TE; Rush JW
    J Physiol; 2001 Jun; 533(Pt 3):881-9. PubMed ID: 11410643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaplerotic processes in human skeletal muscle during brief dynamic exercise.
    Gibala MJ; MacLean DA; Graham TE; Saltin B
    J Physiol; 1997 Aug; 502 ( Pt 3)(Pt 3):703-13. PubMed ID: 9279819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mass isotopomer study of anaplerosis from propionate in the perfused rat heart.
    Kasumov T; Cendrowski AV; David F; Jobbins KA; Anderson VE; Brunengraber H
    Arch Biochem Biophys; 2007 Jul; 463(1):110-7. PubMed ID: 17418801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of various substrates to total citric acid cycle flux and anaplerosis as determined by 13C isotopomer analysis and O2 consumption in the heart.
    Malloy CR; Jones JG; Jeffrey FM; Jessen ME; Sherry AD
    MAGMA; 1996 Mar; 4(1):35-46. PubMed ID: 8774000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of dynamic metabolomics to examine in vivo skeletal muscle glucose metabolism in the chronically high-fat fed mouse.
    Kowalski GM; De Souza DP; Burch ML; Hamley S; Kloehn J; Selathurai A; Tull D; O'Callaghan S; McConville MJ; Bruce CR
    Biochem Biophys Res Commun; 2015 Jun; 462(1):27-32. PubMed ID: 25930998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein and amino acid metabolism in human muscle.
    Wagenmakers AJ
    Adv Exp Med Biol; 1998; 441():307-19. PubMed ID: 9781336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.