BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 10760261)

  • 1. Effects of saturation mutagenesis of the phage SP6 promoter on transcription activity, presented by activity logos.
    Shin I; Kim J; Cantor CR; Kang C
    Proc Natl Acad Sci U S A; 2000 Apr; 97(8):3890-5. PubMed ID: 10760261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of multiple mutations at the conserved TATA sequence of bacteriophage SP6 promoter on transcription efficiency.
    Kim SS; Hong Y; Kang C
    Biochem Mol Biol Int; 1993 Sep; 31(1):153-9. PubMed ID: 8260939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viability of E. coli cells containing phage RNA polymerase and promoter: interference of plasmid replication by transcription.
    Kwon YS; Kim J; Kang C
    Genet Anal; 1998 Oct; 14(4):133-9. PubMed ID: 9834856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on SP6 promoter using a new plasmid vector that allows gene insertion at the transcription initiation site.
    Kang C; Wu CW
    Nucleic Acids Res; 1987 Mar; 15(5):2279-94. PubMed ID: 3031593
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A two-base-pair substitution in T7 promoter by SP6 promoter-specific base pairs alone abolishes T7 promoter activity but reveals SP6 promoter activity.
    Lee SS; Kang C
    Biochem Int; 1992 Feb; 26(1):1-5. PubMed ID: 1616486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription initiation site selection and abortive initiation cycling of phage SP6 RNA polymerase.
    Nam SC; Kang CW
    J Biol Chem; 1988 Dec; 263(34):18123-7. PubMed ID: 3192528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All 4 bases of both strands at -9 and -8 in T7 promoter are needed to be substituted by SP6-specific bases to switch promoter specificity.
    Lee SS; Park SK; Cho IH; Kang C
    Biochem Mol Biol Int; 1993 Dec; 31(6):1017-21. PubMed ID: 8193585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of a single base-pair deletion in the bacteriophage lambda PRM promoter. Repression of PRM by repressor bound at OR2 and by RNA polymerase bound at PR.
    Woody ST; Fong RS; Gussin GN
    J Mol Biol; 1993 Jan; 229(1):37-51. PubMed ID: 8421315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SP6 RNA polymerase stutters when initiating from an AAA... sequence.
    Cunningham PR; Weitzmann CJ; Ofengand J
    Nucleic Acids Res; 1991 Sep; 19(17):4669-73. PubMed ID: 1891358
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro transcription and translational efficiency of chimeric SP6 messenger RNAs devoid of 5' vector nucleotides.
    Jobling SA; Cuthbert CM; Rogers SG; Fraley RT; Gehrke L
    Nucleic Acids Res; 1988 May; 16(10):4483-98. PubMed ID: 3260027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequences of three promoters for the bacteriophage SP6 RNA polymerase.
    Brown JE; Klement JF; McAllister WT
    Nucleic Acids Res; 1986 Apr; 14(8):3521-6. PubMed ID: 3010240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous initiation due to slippage at the bacteriophage 82 late gene promoter in vitro.
    Guo HC; Roberts JW
    Biochemistry; 1990 Nov; 29(47):10702-9. PubMed ID: 2271677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A direct real-time spectroscopic investigation of the mechanism of open complex formation by T7 RNA polymerase.
    Sastry SS; Ross BM
    Biochemistry; 1996 Dec; 35(49):15715-25. PubMed ID: 8961934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aromatic amino acids in region 2.3 of Escherichia coli sigma 70 participate collectively in the formation of an RNA polymerase-promoter open complex.
    Panaghie G; Aiyar SE; Bobb KL; Hayward RS; de Haseth PL
    J Mol Biol; 2000 Jun; 299(5):1217-30. PubMed ID: 10873447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of the sequences recognized by phage phi 29 transcriptional activator: possible interaction between the activator and the RNA polymerase.
    Nuez B; Rojo F; Barthelemy I; Salas M
    Nucleic Acids Res; 1991 May; 19(9):2337-42. PubMed ID: 1904153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Promoter selectivity of Escherichia coli RNA polymerase: effect of base substitutions in the promoter -35 region on promoter strength.
    Kobayashi M; Nagata K; Ishihama A
    Nucleic Acids Res; 1990 Dec; 18(24):7367-72. PubMed ID: 2259628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of nucleotide replacement on the effectiveness and specificity of the SP6 promotor].
    Nazarenko IA; Gorn VV
    Mol Biol (Mosk); 1991; 25(6):1661-6. PubMed ID: 1813808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mutant T7 RNA polymerase that is defective in RNA binding and blocked in the early stages of transcription.
    He B; Rong M; Durbin RK; McAllister WT
    J Mol Biol; 1997 Jan; 265(3):275-88. PubMed ID: 9018042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. T7 RNA polymerase mutants with altered promoter specificities.
    Raskin CA; Diaz GA; McAllister WT
    Proc Natl Acad Sci U S A; 1993 Apr; 90(8):3147-51. PubMed ID: 8475053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The new core promoter element XCPE1 (X Core Promoter Element 1) directs activator-, mediator-, and TATA-binding protein-dependent but TFIID-independent RNA polymerase II transcription from TATA-less promoters.
    Tokusumi Y; Ma Y; Song X; Jacobson RH; Takada S
    Mol Cell Biol; 2007 Mar; 27(5):1844-58. PubMed ID: 17210644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.