BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 10760304)

  • 1. NADPH oxidase is an O2 sensor in airway chemoreceptors: evidence from K+ current modulation in wild-type and oxidase-deficient mice.
    Fu XW; Wang D; Nurse CA; Dinauer MC; Cutz E
    Proc Natl Acad Sci U S A; 2000 Apr; 97(8):4374-9. PubMed ID: 10760304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase.
    Archer SL; Reeve HL; Michelakis E; Puttagunta L; Waite R; Nelson DP; Dinauer MC; Weir EK
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):7944-9. PubMed ID: 10393927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NADPH-oxidase and a hydrogen peroxide-sensitive K+ channel may function as an oxygen sensor complex in airway chemoreceptors and small cell lung carcinoma cell lines.
    Wang D; Youngson C; Wong V; Yeger H; Dinauer MC; Vega-Saenz Miera E; Rudy B; Cutz E
    Proc Natl Acad Sci U S A; 1996 Nov; 93(23):13182-7. PubMed ID: 8917565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. O(2) sensing by airway chemoreceptor-derived cells. Protein kinase c activation reveals functional evidence for involvement of NADPH oxidase.
    O'Kelly I; Lewis A; Peers C; Kemp PJ
    J Biol Chem; 2000 Mar; 275(11):7684-92. PubMed ID: 10713079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of NOX2 and "novel oxidases" in airway chemoreceptor O(2) sensing.
    Cutz E; Pan J; Yeger H
    Adv Exp Med Biol; 2009; 648():427-38. PubMed ID: 19536508
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental regulation of O(2) sensing in neonatal adrenal chromaffin cells from wild-type and NADPH-oxidase-deficient mice.
    Thompson RJ; Farragher SM; Cutz E; Nurse CA
    Pflugers Arch; 2002 Jul; 444(4):539-48. PubMed ID: 12136274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NOX2 (gp91phox) is a predominant O2 sensor in a human airway chemoreceptor cell line: biochemical, molecular, and electrophysiological evidence.
    Buttigieg J; Pan J; Yeger H; Cutz E
    Am J Physiol Lung Cell Mol Physiol; 2012 Oct; 303(7):L598-607. PubMed ID: 22865553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Respiratory control in neonatal mice with NADPH oxidase deficiency.
    Kazemian P; Stephenson R; Yeger H; Cutz E
    Respir Physiol; 2001 Jun; 126(2):89-101. PubMed ID: 11348637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characteristics of carotid body chemosensitivity in NADPH oxidase-deficient mice.
    He L; Chen J; Dinger B; Sanders K; Sundar K; Hoidal J; Fidone S
    Am J Physiol Cell Physiol; 2002 Jan; 282(1):C27-33. PubMed ID: 11742795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen sensing in airway chemoreceptors.
    Youngson C; Nurse C; Yeger H; Cutz E
    Nature; 1993 Sep; 365(6442):153-5. PubMed ID: 8371757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective modulation of membrane currents by hypoxia in intact airway chemoreceptors from neonatal rabbit.
    Fu XW; Nurse CA; Wang YT; Cutz E
    J Physiol; 1999 Jan; 514 ( Pt 1)(Pt 1):139-50. PubMed ID: 9831722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADPH oxidase does not account fully for O2-sensing in model airway chemoreceptor cells.
    O'Kelly I; Peers C; Kemp PJ
    Biochem Biophys Res Commun; 2001 May; 283(5):1131-4. PubMed ID: 11355890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mice lacking in gp91 phox subunit of NAD(P)H oxidase showed glomus cell [Ca(2+)](i) and respiratory responses to hypoxia.
    Roy A; Rozanov C; Mokashi A; Daudu P; Al-mehdi AB; Shams H; Lahiri S
    Brain Res; 2000 Jul; 872(1-2):188-93. PubMed ID: 10924691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of p47phox gene deletion on ROS production and oxygen sensing in mouse carotid body chemoreceptor cells.
    He L; Dinger B; Sanders K; Hoidal J; Obeso A; Stensaas L; Fidone S; Gonzalez C
    Am J Physiol Lung Cell Mol Physiol; 2005 Dec; 289(6):L916-24. PubMed ID: 16280459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. O2-sensing by model airway chemoreceptors. Hypoxic inhibition of K+ channels in H146 cells.
    O'Kelly I; Peers C; Kemp PJ
    Adv Exp Med Biol; 2000; 475():611-22. PubMed ID: 10849701
    [No Abstract]   [Full Text] [Related]  

  • 16. NADPH oxidase limits innate immune responses in the lungs in mice.
    Segal BH; Han W; Bushey JJ; Joo M; Bhatti Z; Feminella J; Dennis CG; Vethanayagam RR; Yull FE; Capitano M; Wallace PK; Minderman H; Christman JW; Sporn MB; Chan J; Vinh DC; Holland SM; Romani LR; Gaffen SL; Freeman ML; Blackwell TS
    PLoS One; 2010 Mar; 5(3):e9631. PubMed ID: 20300512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NADPH oxidase activity is higher in cerebral versus systemic arteries of four animal species: role of Nox2.
    Miller AA; Drummond GR; De Silva TM; Mast AE; Hickey H; Williams JP; Broughton BR; Sobey CG
    Am J Physiol Heart Circ Physiol; 2009 Jan; 296(1):H220-5. PubMed ID: 19028794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superoxide production and expression of NAD(P)H oxidases by transformed and primary human colonic epithelial cells.
    Perner A; Andresen L; Pedersen G; Rask-Madsen J
    Gut; 2003 Feb; 52(2):231-6. PubMed ID: 12524405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of components of the phagocytic NADPH oxidase in oxygen sensing.
    Sanders KA; Sundar KM; He L; Dinger B; Fidone S; Hoidal JR
    J Appl Physiol (1985); 2002 Oct; 93(4):1357-64. PubMed ID: 12235036
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of NADPH oxidase in carotid body arterial chemoreceptors.
    Dinger B; He L; Chen J; Liu X; Gonzalez C; Obeso A; Sanders K; Hoidal J; Stensaas L; Fidone S
    Respir Physiol Neurobiol; 2007 Jul; 157(1):45-54. PubMed ID: 17223613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.