These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 10760503)
1. Fine architecture of bacterial inclusion bodies. Carrió MM; Cubarsi R; Villaverde A FEBS Lett; 2000 Apr; 471(1):7-11. PubMed ID: 10760503 [TBL] [Abstract][Full Text] [Related]
2. Localization of functional polypeptides in bacterial inclusion bodies. García-Fruitós E; Arís A; Villaverde A Appl Environ Microbiol; 2007 Jan; 73(1):289-94. PubMed ID: 17085715 [TBL] [Abstract][Full Text] [Related]
3. In situ protein folding and activation in bacterial inclusion bodies. Gonzalez-Montalban N; Natalello A; García-Fruitós E; Villaverde A; Doglia SM Biotechnol Bioeng; 2008 Jul; 100(4):797-802. PubMed ID: 18351678 [TBL] [Abstract][Full Text] [Related]
4. A mathematical approach to molecular organization and proteolytic disintegration of bacterial inclusion bodies. Cubarsi R; Carrió MM; Villaverde A Math Med Biol; 2005 Sep; 22(3):209-26. PubMed ID: 15781425 [TBL] [Abstract][Full Text] [Related]
5. Protein aggregation as bacterial inclusion bodies is reversible. Carrió MM; Villaverde A FEBS Lett; 2001 Jan; 489(1):29-33. PubMed ID: 11231008 [TBL] [Abstract][Full Text] [Related]
6. Refolding and structural characteristic of TRAIL/Apo2L inclusion bodies from different specific growth rates of recombinant Escherichia coli. Kang H; Sun AY; Shen YL; Wei DZ Biotechnol Prog; 2007; 23(1):286-92. PubMed ID: 17269700 [TBL] [Abstract][Full Text] [Related]
7. In situ proteolytic digestion of inclusion body polypeptides occurs as a cascade process. Cubarsí R; Carrió MM; Villaverde A Biochem Biophys Res Commun; 2001 Mar; 282(2):436-41. PubMed ID: 11401478 [TBL] [Abstract][Full Text] [Related]
8. Inclusion body anatomy and functioning of chaperone-mediated in vivo inclusion body disassembly during high-level recombinant protein production in Escherichia coli. Rinas U; Hoffmann F; Betiku E; Estapé D; Marten S J Biotechnol; 2007 Jan; 127(2):244-57. PubMed ID: 16945443 [TBL] [Abstract][Full Text] [Related]
9. Amyloid-like properties of bacterial inclusion bodies. Carrió M; González-Montalbán N; Vera A; Villaverde A; Ventura S J Mol Biol; 2005 Apr; 347(5):1025-37. PubMed ID: 15784261 [TBL] [Abstract][Full Text] [Related]
10. Proteolytic digestion of bacterial inclusion body proteins during dynamic transition between soluble and insoluble forms. Carrió MM; Corchero JL; Villaverde A Biochim Biophys Acta; 1999 Sep; 1434(1):170-6. PubMed ID: 10556571 [TBL] [Abstract][Full Text] [Related]
11. Studies on the Structure and Properties of Membrane Phospholipase A Bakholdina SI; Stenkova AM; Bystritskaya EP; Sidorin EV; Kim NY; Menchinskaya ES; Gorpenchenko TY; Aminin DL; Shved NA; Solov'eva TF Molecules; 2021 Jun; 26(13):. PubMed ID: 34203222 [TBL] [Abstract][Full Text] [Related]
12. Concepts and tools to exploit the potential of bacterial inclusion bodies in protein science and biotechnology. Gatti-Lafranconi P; Natalello A; Ami D; Doglia SM; Lotti M FEBS J; 2011 Jul; 278(14):2408-18. PubMed ID: 21569207 [TBL] [Abstract][Full Text] [Related]
13. Isolation, solubilization, refolding, and chromatographic purification of human growth hormone from inclusion bodies of Escherichia coli cells: a case study. Singh SM; Eshwari AN; Garg LC; Panda AK Methods Mol Biol; 2005; 308():163-76. PubMed ID: 16082034 [No Abstract] [Full Text] [Related]
14. Influence of pH control in the formation of inclusion bodies during production of recombinant sphingomyelinase-D in Escherichia coli. Castellanos-Mendoza A; Castro-Acosta RM; Olvera A; Zavala G; Mendoza-Vera M; García-Hernández E; Alagón A; Trujillo-Roldán MA; Valdez-Cruz NA Microb Cell Fact; 2014 Sep; 13():137. PubMed ID: 25213001 [TBL] [Abstract][Full Text] [Related]
15. Teaching an old pET new tricks: tuning of inclusion body formation and properties by a mixed feed system in E. coli. Wurm DJ; Quehenberger J; Mildner J; Eggenreich B; Slouka C; Schwaighofer A; Wieland K; Lendl B; Rajamanickam V; Herwig C; Spadiut O Appl Microbiol Biotechnol; 2018 Jan; 102(2):667-676. PubMed ID: 29159587 [TBL] [Abstract][Full Text] [Related]
16. Role of molecular chaperones in inclusion body formation. Carrió MM; Villaverde A FEBS Lett; 2003 Feb; 537(1-3):215-21. PubMed ID: 12606060 [TBL] [Abstract][Full Text] [Related]
17. Solubilization and refolding of inclusion body proteins. Singh A; Upadhyay V; Panda AK Methods Mol Biol; 2015; 1258():283-91. PubMed ID: 25447870 [TBL] [Abstract][Full Text] [Related]
18. Nativelike secondary structure in interleukin-1 beta inclusion bodies by attenuated total reflectance FTIR. Oberg K; Chrunyk BA; Wetzel R; Fink AL Biochemistry; 1994 Mar; 33(9):2628-34. PubMed ID: 8117725 [TBL] [Abstract][Full Text] [Related]
19. Monitoring the production of inclusion bodies during fermentation and enzyme-linked immunosorbent assay analysis of intact inclusion bodies using cryogel minicolumn plates. Ahlqvist J; Dainiak MB; Kumar A; Hörnsten EG; Galaev IY; Mattiasson B Anal Biochem; 2006 Jul; 354(2):229-37. PubMed ID: 16729960 [TBL] [Abstract][Full Text] [Related]
20. Lon and ClpP proteases participate in the physiological disintegration of bacterial inclusion bodies. Vera A; Arís A; Carrió M; González-Montalbán N; Villaverde A J Biotechnol; 2005 Sep; 119(2):163-71. PubMed ID: 15967532 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]