BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 10760580)

  • 1. Reiterative transcription initiation from galP2 promoter of Escherichia coli.
    Rostoks N; Park S; Choy HE
    Biochim Biophys Acta; 2000 Apr; 1491(1-3):185-95. PubMed ID: 10760580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The bacterial DNA-binding protein H-NS represses ribosomal RNA transcription by trapping RNA polymerase in the initiation complex.
    Schröder O; Wagner R
    J Mol Biol; 2000 May; 298(5):737-48. PubMed ID: 10801345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separate contributions of UhpA and CAP to activation of transcription of the uhpT promoter of Escherichia coli.
    Olekhnovich IN; Dahl JL; Kadner RJ
    J Mol Biol; 1999 Oct; 292(5):973-86. PubMed ID: 10512697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topological unwinding of strong and weak promoters by RNA polymerase. A comparison between the lac wild-type and the UV5 sites of Escherichia coli.
    Amouyal M; Buc H
    J Mol Biol; 1987 Jun; 195(4):795-808. PubMed ID: 3309341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. lacP1 promoter with an extended -10 motif. Pleiotropic effects of cyclic AMP protein at different steps of transcription initiation.
    Liu M; Garges S; Adhya S
    J Biol Chem; 2004 Dec; 279(52):54552-7. PubMed ID: 15385551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assays for transcription factor activity.
    Browning D; Savery N; Kolb A; Busby S
    Methods Mol Biol; 2009; 543():369-87. PubMed ID: 19378177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of transcription initiation and promoter escape by
    Henderson KL; Felth LC; Molzahn CM; Shkel I; Wang S; Chhabra M; Ruff EF; Bieter L; Kraft JE; Record MT
    Proc Natl Acad Sci U S A; 2017 Apr; 114(15):E3032-E3040. PubMed ID: 28348246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slippage synthesis at the galP2 promoter of Escherichia coli and its regulation by UTP concentration and cAMP.cAMP receptor protein.
    Jin DJ
    J Biol Chem; 1994 Jun; 269(25):17221-7. PubMed ID: 7516334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro studies of transcript initiation by Escherichia coli RNA polymerase. 3. Influences of individual DNA elements within the promoter recognition region on abortive initiation and promoter escape.
    Vo NV; Hsu LM; Kane CM; Chamberlin MJ
    Biochemistry; 2003 Apr; 42(13):3798-811. PubMed ID: 12667071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro studies of transcript initiation by Escherichia coli RNA polymerase. 1. RNA chain initiation, abortive initiation, and promoter escape at three bacteriophage promoters.
    Hsu LM; Vo NV; Kane CM; Chamberlin MJ
    Biochemistry; 2003 Apr; 42(13):3777-86. PubMed ID: 12667069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA polymerase idling and clearance in gal promoters: use of supercoiled minicircle DNA template made in vivo.
    Choy HE; Adhya S
    Proc Natl Acad Sci U S A; 1993 Jan; 90(2):472-6. PubMed ID: 8380640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactions between RNA polymerase and the positive and negative regulators of transcription at the Escherichia coli gal operon.
    Dalma-Weiszhausz DD; Brenowitz M
    Biochemistry; 1996 Mar; 35(12):3735-45. PubMed ID: 8619994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Domain 1.1 of the sigma(70) subunit of Escherichia coli RNA polymerase modulates the formation of stable polymerase/promoter complexes.
    Vuthoori S; Bowers CW; McCracken A; Dombroski AJ; Hinton DM
    J Mol Biol; 2001 Jun; 309(3):561-72. PubMed ID: 11397080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A stressed intermediate in the formation of stably initiated RNA chains at the Escherichia coli lac UV5 promoter.
    Straney DC; Crothers DM
    J Mol Biol; 1987 Jan; 193(2):267-78. PubMed ID: 2439694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro studies of transcript initiation by Escherichia coli RNA polymerase. 2. Formation and characterization of two distinct classes of initial transcribing complexes.
    Vo NV; Hsu LM; Kane CM; Chamberlin MJ
    Biochemistry; 2003 Apr; 42(13):3787-97. PubMed ID: 12667070
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction in abortive transcription from the lambdaPR promoter by mutations in region 3 of the sigma70 subunit of Escherichia coli RNA polymerase.
    Sen R; Nagai H; Hernandez VJ; Shimamoto N
    J Biol Chem; 1998 Apr; 273(16):9872-7. PubMed ID: 9545328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Escherichia coli RNA polymerase defective in transcription due to its overproduction of abortive initiation products.
    Jin DJ; Turnbough CL
    J Mol Biol; 1994 Feb; 236(1):72-80. PubMed ID: 7508986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of RNA polymerase and the cyclic AMP receptor protein on DNA of the E. coli galactose operon.
    Taniguchi T; de Crombrugghe B
    Nucleic Acids Res; 1983 Aug; 11(15):5165-80. PubMed ID: 6308575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of transcriptional initiation from promoters P1 and P2 of the pyrBI operon of Escherichia coli K12.
    Donahue JP; Turnbough CL
    J Biol Chem; 1990 Nov; 265(31):19091-9. PubMed ID: 1699940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A mutant RNA polymerase reveals a kinetic mechanisms for the switch between nonproductive stuttering synthesis and productive initiation during promoter clearance.
    Jin DJ
    J Biol Chem; 1996 May; 271(20):11659-67. PubMed ID: 8662641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.