BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 10761670)

  • 1. Scintigraphic pitfall: delayed radionecrosis. Case illustration.
    Matheja P; Rickert C; Weckesser M; Höss N; Schober O
    J Neurosurg; 2000 Apr; 92(4):732. PubMed ID: 10761670
    [No Abstract]   [Full Text] [Related]  

  • 2. Delayed cerebral radionecrosis with a high uptake of 11C-methionine on positron emission tomography and 201Tl-chloride on single-photon emission computed tomography.
    Tashima T; Morioka T; Nishio S; Hachisuga S; Fukui M; Sasaki M
    Neuroradiology; 1998 Jul; 40(7):435-8. PubMed ID: 9730342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PET imaging of brain tumors.
    O'Tuama LA; Phillips PC
    Ann Neurol; 1991 Dec; 30(6):851. PubMed ID: 1819263
    [No Abstract]   [Full Text] [Related]  

  • 4. Cerebral radiation necrosis with accumulation of thallium 201 on single-photon emission CT.
    Yoshii Y; Moritake T; Suzuki K; Fujita K; Nose T; Satou M
    AJNR Am J Neuroradiol; 1996 Oct; 17(9):1773-6. PubMed ID: 8896636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tumor relapse or radionecrosis after radiosurgery: single-photon emission computed tomography for differential diagnosis. In regard to Blonigen et al. Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. (Int J Radiat Oncol Biol Phys 2010;77:996-1001).
    Maranzano E; Trippa F; Loreti F
    Int J Radiat Oncol Biol Phys; 2010 Nov; 78(4):1279. PubMed ID: 20970034
    [No Abstract]   [Full Text] [Related]  

  • 6. Failure of computerized tomography to differentiate between radiation necrosis and cerebral tumour.
    van Dellen JR; Danziger A
    S Afr Med J; 1978 Feb; 53(5):171-2. PubMed ID: 653497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiation-induced bilateral cystic frontal lobe necroses demonstrating a fluid-blood level--case report.
    Mineura K; Sasajima T; Kowada M; Ogawa T
    Neurol Med Chir (Tokyo); 1992 Feb; 32(2):104-6. PubMed ID: 1376860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PET versus SPECT in distinguishing radiation necrosis from tumor recurrence in the brain.
    Buchpiguel CA; Alavi JB; Alavi A; Kenyon LC
    J Nucl Med; 1995 Jan; 36(1):159-64. PubMed ID: 7799071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thallium-avid cerebral radiation necrosis.
    Moody EB; Hodes JE; Walsh JW; Thornsberry S
    Clin Nucl Med; 1994 Jul; 19(7):611-3. PubMed ID: 7924103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiation necrosis of the brain: correlation between patterns on computed tomography and dose of radiation.
    Mikhael MA
    J Comput Assist Tomogr; 1979 Apr; 3(2):241-9. PubMed ID: 429631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of Tc-99m HMPAO functional brain imaging in detection of cerebral radionecrosis.
    Dadparvar S; Hussain R; Koffler SP; Gillan MM; Bartolic EI; Miyamoto C
    Cancer J; 2000; 6(6):381-7. PubMed ID: 11131488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifocal brain radionecrosis masquerading as tumor dissemination.
    Safdari H; Boluix B; Gros C
    Surg Neurol; 1984 Jan; 21(1):35-41. PubMed ID: 6689807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The neuroanatomy of depression.
    Cummings JL
    J Clin Psychiatry; 1993 Nov; 54 Suppl():14-20. PubMed ID: 8270593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional imaging using PET and SPECT in pediatric neurology.
    Messa C; Grana C; Lucignani G; Fazio F
    J Nucl Biol Med (1991); 1994 Mar; 38(1):85-8. PubMed ID: 8075181
    [No Abstract]   [Full Text] [Related]  

  • 15. Secondary malignant lymphoma of the central nervous system with delayed high uptake on 123I-IMP single-photon emission computerized tomography. Case report.
    Kitanaka C; Eguchi T; Kokubo T
    J Neurosurg; 1992 May; 76(5):871-3. PubMed ID: 1564549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional imaging of blood brain barrier permeability by single photon emission computerised tomography and positron emission tomography.
    Iannotti F
    Adv Tech Stand Neurosurg; 1992; 19():103-19. PubMed ID: 1418118
    [No Abstract]   [Full Text] [Related]  

  • 17. Differentiation between recurrent brain tumour and post-radiation necrosis: the value of 201Tl SPET versus 18F-FDG PET using a dual-headed coincidence camera--a pilot study.
    Stokkel M; Stevens H; Taphoorn M; Van Rijk P
    Nucl Med Commun; 1999 May; 20(5):411-7. PubMed ID: 10404525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Importance of cerebral tomoscintigraphy using technetium-labeled sestamibi in the differential diagnosis of current tumor vs. radiation necrosis in subtentorial glial tumors in the adult].
    Lamy-Lhullier C; Dubois F; Blond S; Lecouffe P; Steinling M
    Neurochirurgie; 1999 May; 45(2):110-7. PubMed ID: 10448650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Work in progress: [18F] fluorodeoxyglucose and positron emission tomography in the evaluation of radiation necrosis of the brain.
    Patronas NJ; Di Chiro G; Brooks RA; DeLaPaz RL; Kornblith PL; Smith BH; Rizzoli HV; Kessler RM; Manning RG; Channing M; Wolf AP; O'Connor CM
    Radiology; 1982 Sep; 144(4):885-9. PubMed ID: 6981123
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Positron-emission tomography in the diagnosis of space-occupying formations of the brain].
    Medvedev SV; Bekhtereva NP; Kostenikov NA; Rudas MS; Korotkov AD; Kataeva GV; Korsakov MV; Gurchin FA; Mozhaev SV; Fadeev NP
    Zh Vopr Neirokhir Im N N Burdenko; 1996; (1):21-6. PubMed ID: 8711965
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.