These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 10762255)
1. Kinetics and substrate specificity of membrane-reconstituted peptide transporter DtpT of Lactococcus lactis. Fang G; Konings WN; Poolman B J Bacteriol; 2000 May; 182(9):2530-5. PubMed ID: 10762255 [TBL] [Abstract][Full Text] [Related]
2. The di- and tripeptide transport protein of Lactococcus lactis. A new type of bacterial peptide transporter. Hagting A; Kunji ER; Leenhouts KJ; Poolman B; Konings WN J Biol Chem; 1994 Apr; 269(15):11391-9. PubMed ID: 8157671 [TBL] [Abstract][Full Text] [Related]
3. Amplified expression, purification and functional reconstitution of the dipeptide and tripeptide transport protein of Lactococcus lactis. Hagting A; Knol J; Hasemeier B; Streutker MR; Fang G; Poolman B; Konings WN Eur J Biochem; 1997 Jul; 247(2):581-7. PubMed ID: 9266700 [TBL] [Abstract][Full Text] [Related]
4. Membrane topology of the di- and tripeptide transport protein of Lactococcus lactis. Hagting A; vd Velde J; Poolman B; Konings WN Biochemistry; 1997 Jun; 36(22):6777-85. PubMed ID: 9184160 [TBL] [Abstract][Full Text] [Related]
5. Specificity of peptide transport systems in Lactococcus lactis: evidence for a third system which transports hydrophobic di- and tripeptides. Foucaud C; Kunji ER; Hagting A; Richard J; Konings WN; Desmazeaud M; Poolman B J Bacteriol; 1995 Aug; 177(16):4652-7. PubMed ID: 7642491 [TBL] [Abstract][Full Text] [Related]
6. Manipulation of activity and orientation of membrane-reconstituted di-tripeptide transport protein DtpT of Lactococcus lactis. Fang G; Friesen R; Lanfermeijer F; Hagting A; Poolman B; Konings WN Mol Membr Biol; 1999; 16(4):297-304. PubMed ID: 10766129 [TBL] [Abstract][Full Text] [Related]
7. Transport of beta-casein-derived peptides by the oligopeptide transport system is a crucial step in the proteolytic pathway of Lactococcus lactis. Kunji ER; Hagting A; De Vries CJ; Juillard V; Haandrikman AJ; Poolman B; Konings WN J Biol Chem; 1995 Jan; 270(4):1569-74. PubMed ID: 7829486 [TBL] [Abstract][Full Text] [Related]
8. Kinetics and structural requirements for the binding protein of the Di-tripeptide transport system of Lactococcus lactis. Sanz Y; Lanfermeijer FC; Konings WN; Poolman B Biochemistry; 2000 Apr; 39(16):4855-62. PubMed ID: 10769143 [TBL] [Abstract][Full Text] [Related]
9. Genetic and functional characterization of dpp genes encoding a dipeptide transport system in Lactococcus lactis. Sanz Y; Lanfermeijer FC; Renault P; Bolotin A; Konings WN; Poolman B Arch Microbiol; 2001 May; 175(5):334-43. PubMed ID: 11409543 [TBL] [Abstract][Full Text] [Related]
10. Cloning and functional expression in Escherichia coli of the gene encoding the di- and tripeptide transport protein of Lactobacillus helveticus. Nakajima H; Hagting A; Kunji ER; Poolman B; Konings WN Appl Environ Microbiol; 1997 Jun; 63(6):2213-7. PubMed ID: 9172341 [TBL] [Abstract][Full Text] [Related]
11. Kinetics and specificity of peptide uptake by the oligopeptide transport system of Lactococcus lactis. Detmers FJ; Kunji ER; Lanfermeijer FC; Poolman B; Konings WN Biochemistry; 1998 Nov; 37(47):16671-9. PubMed ID: 9843435 [TBL] [Abstract][Full Text] [Related]
12. The peptide transport system Opt is involved in both nutrition and environmental sensing during growth of Lactococcus lactis in milk. Lamarque M; Aubel D; Piard JC; Gilbert C; Juillard V; Atlan D Microbiology (Reading); 2011 Jun; 157(Pt 6):1612-1619. PubMed ID: 21393368 [TBL] [Abstract][Full Text] [Related]
13. Combinatorial peptide libraries reveal the ligand-binding mechanism of the oligopeptide receptor OppA of Lactococcus lactis. Detmers FJ; Lanfermeijer FC; Abele R; Jack RW; Tampe R; Konings WN; Poolman B Proc Natl Acad Sci U S A; 2000 Nov; 97(23):12487-92. PubMed ID: 11050157 [TBL] [Abstract][Full Text] [Related]
14. Specificity of the second binding protein of the peptide ABC-transporter (Dpp) of Lactococcus lactis IL1403. Sanz Y; Toldrá F; Renault P; Poolman B FEMS Microbiol Lett; 2003 Oct; 227(1):33-8. PubMed ID: 14568145 [TBL] [Abstract][Full Text] [Related]
15. Physiology and substrate specificity of two closely related amino acid transporters, SerP1 and SerP2, of Lactococcus lactis. Noens EE; Lolkema JS J Bacteriol; 2015 Mar; 197(5):951-8. PubMed ID: 25535271 [TBL] [Abstract][Full Text] [Related]
16. Transcriptional pattern of genes coding for the proteolytic system of Lactococcus lactis and evidence for coordinated regulation of key enzymes by peptide supply. Guédon E; Renault P; Ehrlich SD; Delorme C J Bacteriol; 2001 Jun; 183(12):3614-22. PubMed ID: 11371525 [TBL] [Abstract][Full Text] [Related]
17. Relationship between utilization of proline and proline-containing peptides and growth of Lactococcus lactis. Smid EJ; Konings WN J Bacteriol; 1990 Sep; 172(9):5286-92. PubMed ID: 2118509 [TBL] [Abstract][Full Text] [Related]
18. Determinants of substrate affinity for the oligopeptide/H+ symporter in the renal brush border membrane. Daniel H; Morse EL; Adibi SA J Biol Chem; 1992 May; 267(14):9565-73. PubMed ID: 1577796 [TBL] [Abstract][Full Text] [Related]
19. Reconstruction of the proteolytic pathway for use of beta-casein by Lactococcus lactis. Kunji ER; Fang G; Jeronimus-Stratingh CM; Bruins AP; Poolman B; Konings WN Mol Microbiol; 1998 Mar; 27(6):1107-18. PubMed ID: 9570397 [TBL] [Abstract][Full Text] [Related]
20. The conserved C-terminus of the citrate (CitP) and malate (MleP) transporters of lactic acid bacteria is involved in substrate recognition. Bandell M; Lolkema JS Biochemistry; 2000 Oct; 39(42):13059-67. PubMed ID: 11041872 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]