These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 10762257)
1. Osmotic and chill activation of glycine betaine porter II in Listeria monocytogenes membrane vesicles. Gerhardt PN; Tombras Smith L; Smith GM J Bacteriol; 2000 May; 182(9):2544-50. PubMed ID: 10762257 [TBL] [Abstract][Full Text] [Related]
2. Gbu glycine betaine porter and carnitine uptake in osmotically stressed Listeria monocytogenes cells. Mendum ML; Smith LT Appl Environ Microbiol; 2002 Nov; 68(11):5647-55. PubMed ID: 12406761 [TBL] [Abstract][Full Text] [Related]
3. Characterization of glycine betaine porter I from Listeria monocytogenes and its roles in salt and chill tolerance. Mendum ML; Smith LT Appl Environ Microbiol; 2002 Feb; 68(2):813-9. PubMed ID: 11823223 [TBL] [Abstract][Full Text] [Related]
4. Sodium-driven, osmotically activated glycine betaine transport in Listeria monocytogenes membrane vesicles. Gerhardt PN; Smith LT; Smith GM J Bacteriol; 1996 Nov; 178(21):6105-9. PubMed ID: 8892806 [TBL] [Abstract][Full Text] [Related]
5. Three transporters mediate uptake of glycine betaine and carnitine by Listeria monocytogenes in response to hyperosmotic stress. Angelidis AS; Smith GM Appl Environ Microbiol; 2003 Feb; 69(2):1013-22. PubMed ID: 12571024 [TBL] [Abstract][Full Text] [Related]
6. Role of the glycine betaine and carnitine transporters in adaptation of Listeria monocytogenes to chill stress in defined medium. Angelidis AS; Smith GM Appl Environ Microbiol; 2003 Dec; 69(12):7492-8. PubMed ID: 14660402 [TBL] [Abstract][Full Text] [Related]
7. Elevated carnitine accumulation by Listeria monocytogenes impaired in glycine betaine transport is insufficient to restore wild-type cryotolerance in milk whey. Angelidis AS; Smith LT; Smith GM Int J Food Microbiol; 2002 May; 75(1-2):1-9. PubMed ID: 11999105 [TBL] [Abstract][Full Text] [Related]
8. Identification of an ATP-driven, osmoregulated glycine betaine transport system in Listeria monocytogenes. Ko R; Smith LT Appl Environ Microbiol; 1999 Sep; 65(9):4040-8. PubMed ID: 10473414 [TBL] [Abstract][Full Text] [Related]
9. Molecular and physiological analysis of the role of osmolyte transporters BetL, Gbu, and OpuC in growth of Listeria monocytogenes at low temperatures. Wemekamp-Kamphuis HH; Sleator RD; Wouters JA; Hill C; Abee T Appl Environ Microbiol; 2004 May; 70(5):2912-8. PubMed ID: 15128551 [TBL] [Abstract][Full Text] [Related]
10. Glycine betaine confers enhanced osmotolerance and cryotolerance on Listeria monocytogenes. Ko R; Smith LT; Smith GM J Bacteriol; 1994 Jan; 176(2):426-31. PubMed ID: 8288538 [TBL] [Abstract][Full Text] [Related]
11. Role of sigmaB in regulating the compatible solute uptake systems of Listeria monocytogenes: osmotic induction of opuC is sigmaB dependent. Fraser KR; Sue D; Wiedmann M; Boor K; O'Byrne CP Appl Environ Microbiol; 2003 Apr; 69(4):2015-22. PubMed ID: 12676677 [TBL] [Abstract][Full Text] [Related]
12. Identification of opuC as a chill-activated and osmotically activated carnitine transporter in Listeria monocytogenes. Angelidis AS; Smith LT; Hoffman LM; Smith GM Appl Environ Microbiol; 2002 Jun; 68(6):2644-50. PubMed ID: 12039715 [TBL] [Abstract][Full Text] [Related]
13. Glycine betaine improves Listeria monocytogenes tolerance to desiccation on parsley leaves independent of the osmolyte transporters BetL, Gbu and OpuC. Dreux N; Albagnac C; Sleator RD; Hill C; Carlin F; Morris CE; Nguyen-the C J Appl Microbiol; 2008 Apr; 104(4):1221-7. PubMed ID: 17976173 [TBL] [Abstract][Full Text] [Related]
14. Betaine and L-carnitine transport by Listeria monocytogenes Scott A in response to osmotic signals. Verheul A; Glaasker E; Poolman B; Abee T J Bacteriol; 1997 Nov; 179(22):6979-85. PubMed ID: 9371443 [TBL] [Abstract][Full Text] [Related]
15. Transport of glycine-betaine by Listeria monocytogenes. Patchett RA; Kelly AF; Kroll RG Arch Microbiol; 1994; 162(3):205-10. PubMed ID: 7979875 [TBL] [Abstract][Full Text] [Related]
16. Multiple deletions of the osmolyte transporters BetL, Gbu, and OpuC of Listeria monocytogenes affect virulence and growth at high osmolarity. Wemekamp-Kamphuis HH; Wouters JA; Sleator RD; Gahan CG; Hill C; Abee T Appl Environ Microbiol; 2002 Oct; 68(10):4710-6. PubMed ID: 12324311 [TBL] [Abstract][Full Text] [Related]
17. Identification and disruption of BetL, a secondary glycine betaine transport system linked to the salt tolerance of Listeria monocytogenes LO28. Sleator RD; Gahan CG; Abee T; Hill C Appl Environ Microbiol; 1999 May; 65(5):2078-83. PubMed ID: 10224004 [TBL] [Abstract][Full Text] [Related]
18. Role of osmolytes in adaptation of osmotically stressed and chill-stressed Listeria monocytogenes grown in liquid media and on processed meat surfaces. Smith LT Appl Environ Microbiol; 1996 Sep; 62(9):3088-93. PubMed ID: 8795194 [TBL] [Abstract][Full Text] [Related]
19. On the osmotic signal and osmosensing mechanism of an ABC transport system for glycine betaine. van der Heide T; Stuart MC; Poolman B EMBO J; 2001 Dec; 20(24):7022-32. PubMed ID: 11742979 [TBL] [Abstract][Full Text] [Related]
20. Biosynthesis and uptake of glycine betaine as cold-stress response to low temperature in fish pathogen Vibrio anguillarum. Ma Y; Wang Q; Gao X; Zhang Y J Microbiol; 2017 Jan; 55(1):44-55. PubMed ID: 28035596 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]