These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 10762270)

  • 1. Site-specific serine incorporation by Lif and Epr into positions 3 and 5 of the Staphylococcal peptidoglycan interpeptide bridge.
    Ehlert K; Tschierske M; Mori C; Schröder W; Berger-Bächi B
    J Bacteriol; 2000 May; 182(9):2635-8. PubMed ID: 10762270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. epr, which encodes glycylglycine endopeptidase resistance, is homologous to femAB and affects serine content of peptidoglycan cross bridges in Staphylococcus capitis and Staphylococcus aureus.
    Sugai M; Fujiwara T; Ohta K; Komatsuzawa H; Ohara M; Suginaka H
    J Bacteriol; 1997 Jul; 179(13):4311-8. PubMed ID: 9209049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on prolysostaphin processing and characterization of the lysostaphin immunity factor (Lif) of Staphylococcus simulans biovar staphylolyticus.
    Thumm G; Götz F
    Mol Microbiol; 1997 Mar; 23(6):1251-65. PubMed ID: 9106216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lif, the lysostaphin immunity factor, complements FemB in staphylococcal peptidoglycan interpeptide bridge formation.
    Tschierske M; Ehlert K; Strandén AM; Berger-Bächi B
    FEMS Microbiol Lett; 1997 Aug; 153(2):261-4. PubMed ID: 9271851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FmhA and FmhC of
    Willing S; Dyer E; Schneewind O; Missiakas D
    J Biol Chem; 2020 Sep; 295(39):13664-13676. PubMed ID: 32759309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specificities of FemA and FemB for different glycine residues: FemB cannot substitute for FemA in staphylococcal peptidoglycan pentaglycine side chain formation.
    Ehlert K; Schröder W; Labischinski H
    J Bacteriol; 1997 Dec; 179(23):7573-6. PubMed ID: 9393725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The lysostaphin endopeptidase resistance gene (epr) specifies modification of peptidoglycan cross bridges in Staphylococcus simulans and Staphylococcus aureus.
    DeHart HP; Heath HE; Heath LS; LeBlanc PA; Sloan GL
    Appl Environ Microbiol; 1995 Apr; 61(4):1475-9. PubMed ID: 7747966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Staphylococcal peptidoglycan interpeptide bridge biosynthesis: a novel antistaphylococcal target?
    Kopp U; Roos M; Wecke J; Labischinski H
    Microb Drug Resist; 1996; 2(1):29-41. PubMed ID: 9158720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell wall-targeting domain of glycylglycine endopeptidase distinguishes among peptidoglycan cross-bridges.
    Lu JZ; Fujiwara T; Komatsuzawa H; Sugai M; Sakon J
    J Biol Chem; 2006 Jan; 281(1):549-58. PubMed ID: 16257954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Lif, the lysostaphin immunity factor, on acceptors of surface proteins and cell wall sorting efficiency in Staphylococcus carnosus.
    Strauss A; Thumm G; Götz F
    J Bacteriol; 1998 Sep; 180(18):4960-2. PubMed ID: 9733703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus.
    Strandén AM; Ehlert K; Labischinski H; Berger-Bächi B
    J Bacteriol; 1997 Jan; 179(1):9-16. PubMed ID: 8981974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and molecular characterization of a gene homologous to epr (endopeptidase resistance gene) in Staphylococcus aureus.
    Sugai M; Fujiwara T; Komatsuzawa H; SuginakaH
    Gene; 1998 Dec; 224(1-2):67-75. PubMed ID: 9931440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anchor structure of staphylococcal surface proteins. III. Role of the FemA, FemB, and FemX factors in anchoring surface proteins to the bacterial cell wall.
    Ton-That H; Labischinski H; Berger-Bächi B; Schneewind O
    J Biol Chem; 1998 Oct; 273(44):29143-9. PubMed ID: 9786923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of femB on methicillin resistance and peptidoglycan metabolism in Staphylococcus aureus.
    Henze U; Sidow T; Wecke J; Labischinski H; Berger-Bächi B
    J Bacteriol; 1993 Mar; 175(6):1612-20. PubMed ID: 8383661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of three additional femAB-like open reading frames in Staphylococcus aureus.
    Tschierske M; Mori C; Rohrer S; Ehlert K; Shaw KJ; Berger-Bächi B
    FEMS Microbiol Lett; 1999 Feb; 171(2):97-102. PubMed ID: 10077832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro assembly of a complete, pentaglycine interpeptide bridge containing cell wall precursor (lipid II-Gly5) of Staphylococcus aureus.
    Schneider T; Senn MM; Berger-Bächi B; Tossi A; Sahl HG; Wiedemann I
    Mol Microbiol; 2004 Jul; 53(2):675-85. PubMed ID: 15228543
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Secretome analysis revealed adaptive and non-adaptive responses of the Staphylococcus carnosus femB mutant.
    Nega M; Dube L; Kull M; Ziebandt AK; Ebner P; Albrecht D; Krismer B; Rosenstein R; Hecker M; Götz F
    Proteomics; 2015 Apr; 15(7):1268-79. PubMed ID: 25430637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmid-specified FemABX-like immunity factor in Staphylococcus sciuri DD 4747.
    Heath LS; Gargis SR; Smithberg SR; Johnson HP; Heath HE; Leblanc PA; Sloan GL
    FEMS Microbiol Lett; 2005 Aug; 249(2):227-31. PubMed ID: 16006076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Living with an imperfect cell wall: compensation of femAB inactivation in Staphylococcus aureus.
    Hübscher J; Jansen A; Kotte O; Schäfer J; Majcherczyk PA; Harris LG; Bierbaum G; Heinemann M; Berger-Bächi B
    BMC Genomics; 2007 Sep; 8():307. PubMed ID: 17784943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacteriophage-derived CHAP domain protein, P128, kills Staphylococcus cells by cleaving interpeptide cross-bridge of peptidoglycan.
    Sundarrajan S; Raghupatil J; Vipra A; Narasimhaswamy N; Saravanan S; Appaiah C; Poonacha N; Desai S; Nair S; Bhatt RN; Roy P; Chikkamadaiah R; Durgaiah M; Sriram B; Padmanabhan S; Sharma U
    Microbiology (Reading); 2014 Oct; 160(Pt 10):2157-2169. PubMed ID: 25023246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.