BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 10762431)

  • 1. Effects of transforming growth factor beta-1 and all-trans-retinoic acid on androgen-induced development of neonatal mouse bulbourethral glands in vitro.
    Tanji N; Rahman SA; Terada N; Yokoyama M; Cunha GR
    Int J Androl; 2000 Apr; 23(2):58-64. PubMed ID: 10762431
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitory effects of retinoic acids on androgen-dependent development of neonatal mouse seminal vesicles in vitro.
    Tanji N; Yokoyama M; Takeuchi M; Terada N; Dahiya R; Cunha GR
    Endocrinology; 1996 Jul; 137(7):2887-95. PubMed ID: 8770910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new model system for studying androgen-induced growth and morphogenesis in vitro: the bulbourethral gland.
    Cooke PS; Young PF; Cunha GR
    Endocrinology; 1987 Dec; 121(6):2161-70. PubMed ID: 2960517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibitory effects of transforming growth factor-beta 1 on androgen-induced development of neonatal mouse seminal vesicles in vitro.
    Tanji N; Tsuji M; Terada N; Takeuchi M; Cunha GR
    Endocrinology; 1994 Mar; 134(3):1155-62. PubMed ID: 8119154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory effects of suramin on androgen-dependent and -independent growth of neonatal mouse seminal vesicles in vitro.
    Tanji N; Yokoyama M; Takeuchi M; Terada N; Cunha GR
    Urol Res; 1995; 23(2):127-33. PubMed ID: 7676535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphogenetic and proliferative effects of testosterone and insulin on the neonatal mouse seminal vesicle in vitro.
    Tsuji M; Shima H; Cunha GR
    Endocrinology; 1991 Nov; 129(5):2289-97. PubMed ID: 1935767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Postnatal growth of mouse seminal vesicle is dependent on 5 alpha-dihydrotestosterone.
    Shima H; Tsuji M; Young P; Cunha GR
    Endocrinology; 1990 Dec; 127(6):3222-33. PubMed ID: 2249647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Androgen dependence of growth and epithelial morphogenesis in neonatal mouse bulbourethral glands.
    Cooke PS; Young PF; Cunha GR
    Endocrinology; 1987 Dec; 121(6):2153-60. PubMed ID: 3678144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Androgens lower prostaglandin E2 levels in neonatal mouse bulbourethral gland in in vitro cultures.
    Little JS; Best KL; Goode RL; Toomey RE; Neubauer BL
    Endocrinology; 1992 Dec; 131(6):2663-71. PubMed ID: 1446608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro androgen-induced growth and morphogenesis of the Wolffian duct within urogenital ridge.
    Tsuji M; Shima H; Cunha GR
    Endocrinology; 1991 Apr; 128(4):1805-11. PubMed ID: 1825979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anti-androgenic effects of Win 49,596 on development of the neonatal mouse bulbourethral gland in culture.
    Cooke PS; Reicherts MR
    Prostate; 1990; 17(2):145-54. PubMed ID: 2399190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transforming growth factor-beta1 is a mediator of androgen-regulated growth arrest in an androgen-responsive prostatic cancer cell line, LNCaP.
    Kim IY; Kim JH; Zelner DJ; Ahn HJ; Sensibar JA; Lee C
    Endocrinology; 1996 Mar; 137(3):991-9. PubMed ID: 8603613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of male urogenital epithelia elicited by soluble mesenchymal factors.
    Shima H; Tsuji M; Elfman F; Cunha GR
    J Androl; 1995; 16(3):233-41. PubMed ID: 7559156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in levels of mRNAs of transforming growth factor (TGF)-beta1, -beta2, -beta3, TGF-beta type II receptor and sulfated glycoprotein-2 during apoptosis of mouse uterine epithelium.
    Wada K; Nomura S; Morii E; Kitamura Y; Nishizawa Y; Miyake A; Terada N
    J Steroid Biochem Mol Biol; 1996 Dec; 59(5-6):367-75. PubMed ID: 9010342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of transforming growth factor-beta1, -beta2, and -beta3 in androgen-responsive growth of NRP-152 rat prostatic epithelial cells.
    Lucia MS; Sporn MB; Roberts AB; Stewart LV; Danielpour D
    J Cell Physiol; 1998 May; 175(2):184-92. PubMed ID: 9525477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dihydrotestosterone stimulates branching morphogenesis, cell proliferation, and programmed cell death in mouse embryonic lung explants.
    Levesque BM; Vosatka RJ; Nielsen HC
    Pediatr Res; 2000 Apr; 47(4 Pt 1):481-91. PubMed ID: 10759155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abrogation of transforming growth factor-beta type II receptor stimulates embryonic mouse lung branching morphogenesis in culture.
    Zhao J; Bu D; Lee M; Slavkin HC; Hall FL; Warburton D
    Dev Biol; 1996 Nov; 180(1):242-57. PubMed ID: 8948588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of sensitivity to transforming growth factor-beta 1 (TGF-beta 1) and the level of type II TGF-beta receptor in LNCaP cells by dihydrotestosterone.
    Kim IY; Zelner DJ; Sensibar JA; Ahn HJ; Park L; Kim JH; Lee C
    Exp Cell Res; 1996 Jan; 222(1):103-10. PubMed ID: 8549651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of dihydrotestosterone (DHT) on TGF-β1 signaling pathway in epithelial ovarian cancer cells.
    Kohan-Ivani K; Gabler F; Selman A; Vega M; Romero C
    J Cancer Res Clin Oncol; 2016 Jan; 142(1):47-58. PubMed ID: 26091707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Can transforming growth factor-beta1 and retinoids modify the activity of estradiol and antiestrogens in MCF-7 breast cancer cells?
    Czeczuga-Semeniuk E; Anchim T; Dziecioł J; Dabrowska M; Wołczyński S
    Acta Biochim Pol; 2004; 51(3):733-45. PubMed ID: 15448735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.