These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 10762696)

  • 1. Increased neuronal excitability after long-term O(2) deprivation is mediated mainly by sodium channels.
    Xia Y; Fung ML; O'Reilly JP; Haddad GG
    Brain Res Mol Brain Res; 2000 Mar; 76(2):211-9. PubMed ID: 10762696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of prolonged O2 deprivation on Na+ channels: differential regulation in adult versus fetal rat brain.
    Xia Y; Haddad GG
    Neuroscience; 1999; 94(4):1231-43. PubMed ID: 10625063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maturation of neuronal excitability in hippocampal neurons of mice chronically exposed to cyclic hypoxia.
    Gu XQ; Haddad GG
    Am J Physiol Cell Physiol; 2003 May; 284(5):C1156-63. PubMed ID: 12676654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic hypoxia in vivo renders neocortical neurons more vulnerable to subsequent acute hypoxic stress.
    O'Reilly JP; Haddad GG
    Brain Res; 1996 Mar; 711(1-2):203-10. PubMed ID: 8680864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na(+) dependence and the role of glutamate receptors and Na(+) channels in ion fluxes during hypoxia of rat hippocampal slices.
    Müller M; Somjen GG
    J Neurophysiol; 2000 Oct; 84(4):1869-80. PubMed ID: 11024079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anoxia-induced depolarization in CA1 hippocampal neurons: role of Na+-dependent mechanisms.
    Fung ML; Haddad GG
    Brain Res; 1997 Jul; 762(1-2):97-102. PubMed ID: 9262163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium homeostasis in rat hippocampal slices during oxygen and glucose deprivation: role of voltage-sensitive sodium channels.
    Fung ML; Croning MD; Haddad GG
    Neurosci Lett; 1999 Nov; 275(1):41-4. PubMed ID: 10554980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na(+) and K(+) concentrations, extra- and intracellular voltages, and the effect of TTX in hypoxic rat hippocampal slices.
    Müller M; Somjen GG
    J Neurophysiol; 2000 Feb; 83(2):735-45. PubMed ID: 10669489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute and chronic increases in excitability in rat hippocampal slices after perinatal hypoxia In vivo.
    Jensen FE; Wang C; Stafstrom CE; Liu Z; Geary C; Stevens MC
    J Neurophysiol; 1998 Jan; 79(1):73-81. PubMed ID: 9425178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Down-regulation of voltage-dependent sodium channels initiated by sodium influx in developing neurons.
    Dargent B; Couraud F
    Proc Natl Acad Sci U S A; 1990 Aug; 87(15):5907-11. PubMed ID: 2165609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of prolonged hypoxia on Na+ channel mRNA subtypes in the developing rat cortex.
    Zhang JH; Gibney GT; Xia Y
    Brain Res Mol Brain Res; 2001 Jul; 91(1-2):154-8. PubMed ID: 11457503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional properties of rat and human neocortical voltage-sensitive sodium currents.
    Cummins TR; Xia Y; Haddad GG
    J Neurophysiol; 1994 Mar; 71(3):1052-64. PubMed ID: 8201401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutamate hyperexcitability and seizure-like activity throughout the brain and spinal cord upon relief from chronic glutamate receptor blockade in culture.
    Van Den Pol AN; Obrietan K; Belousov A
    Neuroscience; 1996 Oct; 74(3):653-74. PubMed ID: 8884763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of voltage-sensitive sodium channels during oxygen deprivation leads to apoptotic neuronal death.
    Banasiak KJ; Burenkova O; Haddad GG
    Neuroscience; 2004; 126(1):31-44. PubMed ID: 15145071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postnatal development of voltage-sensitive Na+ channels in rat brain.
    Xia Y; Haddad GG
    J Comp Neurol; 1994 Jul; 345(2):279-87. PubMed ID: 7929902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potentiometric study of resting potential, contributing K+ channels and the onset of Na+ channel excitability in embryonic rat cortical cells.
    Maric D; Maric I; Smith SV; Serafini R; Hu Q; Barker JL
    Eur J Neurosci; 1998 Aug; 10(8):2532-46. PubMed ID: 9767384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overproduction of voltage-dependent Na+ channels in the developing brain of genetically seizure-susceptible E1 mice.
    Sashihara S; Yanagihara N; Kobayashi H; Izumi F; Tsuji S; Murai Y; Mita T
    Neuroscience; 1992; 48(2):285-91. PubMed ID: 1376448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of metabolic inhibition on the excitability of isolated hippocampal CA1 neurons: developmental aspects.
    Cummins TR; Donnelly DF; Haddad GG
    J Neurophysiol; 1991 Nov; 66(5):1471-82. PubMed ID: 1662712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+ channel expression and neuronal function in the Na+/H+ exchanger 1 null mutant mouse.
    Xia Y; Zhao P; Xue J; Gu XQ; Sun X; Yao H; Haddad GG
    J Neurophysiol; 2003 Jan; 89(1):229-36. PubMed ID: 12522174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-sensitive Na+ channels increase in number in newborn rat brain after in utero hypoxia.
    Xia Y; Haddad GG
    Brain Res; 1994 Jan; 635(1-2):339-44. PubMed ID: 8173974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.