These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 10763301)

  • 1. Compensation of the differential floating capacitance between dual microelectrodes.
    Gagné S; Ganguly US; Comtois S
    IEEE Trans Biomed Eng; 2000 Apr; 47(4):551-5. PubMed ID: 10763301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on electroosmotic effects in glass microelectrodes--improvement of microelectrode selection.
    Plamondon R; Gagné S
    IEEE Trans Biomed Eng; 1984 Jul; 31(7):512-9. PubMed ID: 6735428
    [No Abstract]   [Full Text] [Related]  

  • 3. A quasi-totally shielded, low-capacitance glass-microelectrode with suitable amplifiers for high-frequency intracellular potential and impedance measurements.
    Suzuki K; Rohlicek V; Frömter E
    Pflugers Arch; 1978 Dec; 378(2):141-8. PubMed ID: 569835
    [No Abstract]   [Full Text] [Related]  

  • 4. Fabrication and characterization of nonplanar microelectrode array circuits for use in arthroscopic diagnosis of cartilage diseases.
    Quenneville E; Binette JS; Garon M; Légaré A; Meunier M; Buschmann MD
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2164-73. PubMed ID: 15605864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of impedance at the microelectrode-saline and microelectrode-culture medium interface.
    Carter SJ; Linker CJ; Turkle-Huslig T; Howard LL
    IEEE Trans Biomed Eng; 1992 Nov; 39(11):1123-9. PubMed ID: 1487275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-path capacitance compensation network for microelectrode recordings.
    McGillivray R; Wald R
    Am J Physiol; 1980 Jun; 238(6):H930-1. PubMed ID: 7386653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental determination of Cm measurement related hardware parameters of the patch-clamp amplifier.
    Zhang H; Xiong J; Luo J; Qu A
    J Neurosci Methods; 2009 Jan; 176(2):246-53. PubMed ID: 18789969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ISFET-neuron junction: circuit models and extracellular signal simulations.
    Martinoia S; Massobrio P
    Biosens Bioelectron; 2004 Jun; 19(11):1487-96. PubMed ID: 15093221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bridge balance in intracellular recording; introduction of the phase-sensitive method.
    Park MR; Kita H; Klee MR; Oomura Y
    J Neurosci Methods; 1983 Jun; 8(2):105-25. PubMed ID: 6308361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design rule for optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS).
    Price DT; Rahman AR; Bhansali S
    Biosens Bioelectron; 2009 Mar; 24(7):2071-6. PubMed ID: 19101134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of viable Salmonella using microelectrode-based capacitance measurement coupled with immunomagnetic separation.
    Yang L; Li Y
    J Microbiol Methods; 2006 Jan; 64(1):9-16. PubMed ID: 15936099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glass microelectrode tip capacitance: its measurement and a method for its reduction.
    Cornwall MC; Thomas MV
    J Neurosci Methods; 1981 Feb; 3(3):225-32. PubMed ID: 7218851
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward the ultimate metal microelectrode.
    Loeb GE; Peck RA; Martyniuk J
    J Neurosci Methods; 1995 Dec; 63(1-2):175-83. PubMed ID: 8788062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impedance characterization of microarray recording electrodes in vitro.
    Merrill DR; Tresco PA
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1960-5. PubMed ID: 16285400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AC frequency characteristics of coplanar impedance sensors as design parameters.
    Hong J; Yoon DS; Kim SK; Kim TS; Kim S; Pak EY; No K
    Lab Chip; 2005 Mar; 5(3):270-9. PubMed ID: 15726203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo electrical impedance spectroscopy of tissue reaction to microelectrode arrays.
    Mercanzini A; Colin P; Bensadoun JC; Bertsch A; Renaud P
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1909-18. PubMed ID: 19362904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Giant lipid vesicles impaled with glass microelectrodes: GigaOhm seal by membrane spreading.
    Reccius CH; Fromherz P
    Langmuir; 2004 Dec; 20(25):11175-82. PubMed ID: 15568873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the capacitance of solid-state potentiometric sensors: An electrochemical time-of-flight method.
    Elsen HA; Slowinska K; Hull E; Majda M
    Anal Chem; 2006 Sep; 78(18):6356-63. PubMed ID: 16970309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cultured neurons coupled to microelectrode arrays: circuit models, simulations and experimental data.
    Martinoia S; Massobrio P; Bove M; Massobrio G
    IEEE Trans Biomed Eng; 2004 May; 51(5):859-64. PubMed ID: 15132514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement and analysis of impedance in epithelial membranes.
    Tarvin JT; Reinach PS; Jackson DL
    Prog Clin Biol Res; 1989; 292():389-99. PubMed ID: 2786215
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.