BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 10763414)

  • 1. Chromosomal localization of two human genes involved in phosphate homeostasis: the type IIb sodium-phosphate cotransporter and stanniocalcin-2.
    White KE; Biber J; Murer H; Econs MJ
    Somat Cell Mol Genet; 1998 Nov; 24(6):357-62. PubMed ID: 10763414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular cloning, functional characterization, tissue distribution, and chromosomal localization of a human, small intestinal sodium-phosphate (Na+-Pi) transporter (SLC34A2).
    Xu H; Bai L; Collins JF; Ghishan FK
    Genomics; 1999 Dec; 62(2):281-4. PubMed ID: 10610722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of PiUS, a stimulator of cellular phosphate uptake to human chromosome 3p21.3.
    White KE; Econs MJ
    Somat Cell Mol Genet; 1998 Jan; 24(1):71-4. PubMed ID: 9776982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromosomal localization of the human renal sodium phosphate transporter to chromosome 5: implications for X-linked hypophosphatemia.
    Ghishan FK; Knobel S; Dasuki M; Butler M; Phillips J
    Pediatr Res; 1994 Apr; 35(4 Pt 1):510-3. PubMed ID: 8047391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High resolution mapping of the renal sodium-phosphate cotransporter gene (NPT2) confirms its localization to human chromosome 5q35.
    McPherson JD; Krane MC; Wagner-McPherson CB; Kos CH; Tenenhouse HS
    Pediatr Res; 1997 May; 41(5):632-4. PubMed ID: 9128283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The regulation and function of phosphate in the human body.
    Takeda E; Taketani Y; Sawada N; Sato T; Yamamoto H
    Biofactors; 2004; 21(1-4):345-55. PubMed ID: 15630224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isolation and chromosomal mapping of a novel human gene showing homology to Na+/PO4 cotransporter.
    Shibui A; Tsunoda T; Seki N; Suzuki Y; Sugane K; Sugano S
    J Hum Genet; 1999; 44(3):190-2. PubMed ID: 10319585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromosome assignments of genes for human Na(+)-dependent phosphate co-transporters NaPi-3 and NPT-1.
    Miyamoto K; Tatsumi S; Yamamoto H; Katai K; Taketani Y; Morita K; Takeda E
    Tokushima J Exp Med; 1995 Jul; 42(1-2):5-9. PubMed ID: 7570593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hereditary hypophosphatemic rickets with hypercalciuria is not caused by mutations in the Na/Pi cotransporter NPT2 gene.
    Jones AO; Tzenova J; Frappier D; Crumley MJ; Roslin NM; Kos CH; Tieder M; Langman CB; Proesmans W; Carpenter TO; Rice A; Anderson D; Morgan K; Fujiwara TM; Tenenhouse HS
    J Am Soc Nephrol; 2001 Mar; 12(3):507-514. PubMed ID: 11181798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inorganic phosphate homeostasis in sodium-dependent phosphate cotransporter Npt2b⁺/⁻ mice.
    Ohi A; Hanabusa E; Ueda O; Segawa H; Horiba N; Kaneko I; Kuwahara S; Mukai T; Sasaki S; Tominaga R; Furutani J; Aranami F; Ohtomo S; Oikawa Y; Kawase Y; Wada NA; Tachibe T; Kakefuda M; Tateishi H; Matsumoto K; Tatsumi S; Kido S; Fukushima N; Jishage K; Miyamoto K
    Am J Physiol Renal Physiol; 2011 Nov; 301(5):F1105-13. PubMed ID: 21816756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel phosphate-regulating genes in the pathogenesis of renal phosphate wasting disorders.
    Tenenhouse HS; Sabbagh Y
    Pflugers Arch; 2002 Jun; 444(3):317-26. PubMed ID: 12111239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autosomal recessive hypophosphataemic rickets with hypercalciuria is not caused by mutations in the type II renal sodium/phosphate cotransporter gene.
    van den Heuvel L; Op de Koul K; Knots E; Knoers N; Monnens L
    Nephrol Dial Transplant; 2001 Jan; 16(1):48-51. PubMed ID: 11208993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Renal Na(+)-phosphate cotransporter gene expression in X-linked Hyp and Gy mice.
    Tenenhouse HS; Beck L
    Kidney Int; 1996 Apr; 49(4):1027-32. PubMed ID: 8691720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted inactivation of Npt2 in mice leads to severe renal phosphate wasting, hypercalciuria, and skeletal abnormalities.
    Beck L; Karaplis AC; Amizuka N; Hewson AS; Ozawa H; Tenenhouse HS
    Proc Natl Acad Sci U S A; 1998 Apr; 95(9):5372-7. PubMed ID: 9560283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sodium phosphate cotransporter family SLC34.
    Murer H; Forster I; Biber J
    Pflugers Arch; 2004 Feb; 447(5):763-7. PubMed ID: 12750889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular cloning of a second human stanniocalcin homologue (STC2).
    Ishibashi K; Miyamoto K; Taketani Y; Morita K; Takeda E; Sasaki S; Imai M
    Biochem Biophys Res Commun; 1998 Sep; 250(2):252-8. PubMed ID: 9753616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in epithelial sodium-coupled phosphate transport.
    Tenenhouse HS
    Curr Opin Nephrol Hypertens; 1999 Jul; 8(4):407-14. PubMed ID: 10491734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative mapping of Na+-phosphate cotransporter genes, NPT1 and NPT2, in human and rabbit.
    Kos CH; Tihy F; Murer H; Lemieux N; Tenenhouse HS
    Cytogenet Cell Genet; 1996; 75(1):22-4. PubMed ID: 8995482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of a renal sodium-phosphate cotransporter gene to human chromosome 5q35.
    Kos CH; Tihy F; Econs MJ; Murer H; Lemieux N; Tenenhouse HS
    Genomics; 1994 Jan; 19(1):176-7. PubMed ID: 8188224
    [No Abstract]   [Full Text] [Related]  

  • 20. Autosomal dominant hypophosphatemic rickets is linked to chromosome 12p13.
    Econs MJ; McEnery PT; Lennon F; Speer MC
    J Clin Invest; 1997 Dec; 100(11):2653-7. PubMed ID: 9389727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.