These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 10764217)

  • 1. Are there systemic changes in the arterial biomechanics of intracranial aneurysm patients?
    Tóth M; Nádasy GL; Nyár I; Kerényi T; Monos E
    Pflugers Arch; 2000 Mar; 439(5):573-8. PubMed ID: 10764217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth of aneurysms can be understood as passive yield to blood pressure. An experimental study.
    Steiger HJ; Aaslid R; Keller S; Reulen HJ
    Acta Neurochir (Wien); 1989; 100(1-2):74-8. PubMed ID: 2816538
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical properties of normal and fibrosclerotic human cerebral arteries.
    Hudetz AG; Márk G; Kovách AG; Kerényi T; Fody L; Monos E
    Atherosclerosis; 1981 Jun; 39(3):353-65. PubMed ID: 7259819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative reactivity and mechanical properties of human isolated internal mammary and radial arteries.
    Chamiot-Clerc P; Copie X; Renaud JF; Safar M; Girerd X
    Cardiovasc Res; 1998 Mar; 37(3):811-9. PubMed ID: 9659466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strength, elasticity and viscoelastic properties of cerebral aneurysms.
    Steiger HJ; Aaslid R; Keller S; Reulen HJ
    Heart Vessels; 1989; 5(1):41-6. PubMed ID: 2584177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear anisotropic stress analysis of anatomically realistic cerebral aneurysms.
    Ma B; Lu J; Harbaugh RE; Raghavan ML
    J Biomech Eng; 2007 Feb; 129(1):88-96. PubMed ID: 17227102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanics of resistance artery wall remodeling in angiotensin-II hypertension and subsequent recovery.
    Nádasy GL; Várbíró S; Szekeres M; Kocsis A; Székács B; Monos E; Kollai M
    Kidney Blood Press Res; 2010; 33(1):37-47. PubMed ID: 20185930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The popliteal artery, an unusual muscular artery with wall properties similar to the aorta: implications for susceptibility to aneurysm formation?
    Debasso R; Astrand H; Bjarnegård N; Rydén Ahlgren A; Sandgren T; Länne T
    J Vasc Surg; 2004 Apr; 39(4):836-42. PubMed ID: 15071452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased carotid wall stress in vascular Ehlers-Danlos syndrome.
    Boutouyrie P; Germain DP; Fiessinger JN; Laloux B; Perdu J; Laurent S
    Circulation; 2004 Mar; 109(12):1530-5. PubMed ID: 15007000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of elasticity on wall shear stress inside cerebral aneurysm at anterior cerebral artery.
    Xu L; Sugawara M; Tanaka G; Ohta M; Liu H; Yamaguchi R
    Technol Health Care; 2016 May; 24(3):349-57. PubMed ID: 26835728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patient-specific hemodynamics and stress-strain state of cerebral aneurysms.
    Ivanov D; Dol A; Polienko A
    Acta Bioeng Biomech; 2016; 18(2):9-17. PubMed ID: 27406681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A nonlinear mathematical model for the development and rupture of intracranial saccular aneurysms.
    Hademenos GJ; Massoud T; Valentino DJ; Duckwiler G; Viñuela F
    Neurol Res; 1994 Oct; 16(5):376-84. PubMed ID: 7870277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Optimality Principle Decreases Hemodynamic Stresses for Aneurysm Initiation at Anterior Cerebral Artery Bifurcations.
    Zhang XJ; Li CH; Hao WL; Zhang DH; Gao BL
    World Neurosurg; 2019 Jan; 121():e379-e388. PubMed ID: 30266713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nonlinear mathematical model for the development and rupture of intracranial fusiform aneurysms.
    Hademenos GJ; Massoud T; Valentino DJ; Duckwiler G; Viñuela F
    Neurol Res; 1994 Dec; 16(6):433-8. PubMed ID: 7708133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationships between the biomechanical properties, composition and molecular structure of connective tissues.
    Oxlund H
    Connect Tissue Res; 1986; 15(1-2):65-72. PubMed ID: 2944703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laboratory tests for strength paramaters of brain aneurysms.
    Tóth BK; Nasztanovics F; Bojtár I
    Acta Bioeng Biomech; 2007; 9(2):3-7. PubMed ID: 18421937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Dolichoectatic intracranial arteries. Advances in images and therapeutics].
    Casas Parera I; Abruzzi M; Lehkuniec E; Schuster G; Muchnik S
    Medicina (B Aires); 1995; 55(1):59-68. PubMed ID: 7565039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sterically inhomogenous viscoelastic behavior of human saccular cerebral aneurysms.
    Tóth M; Nádasy GL; Nyáry I; Kerényi T; Orosz M; Molnárka G; Monos E
    J Vasc Res; 1998; 35(5):345-55. PubMed ID: 9789115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity in the Strength and Structure of Unruptured Cerebral Aneurysms.
    Robertson AM; Duan X; Aziz KM; Hill MR; Watkins SC; Cebral JR
    Ann Biomed Eng; 2015 Jul; 43(7):1502-15. PubMed ID: 25632891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypertrophic remodeling and increased arterial stiffness in patients with intracranial aneurysms.
    Maltete D; Bellien J; Cabrejo L; Iacob M; Proust F; Mihout B; Thuillez C; Guegan-Massardier E; Joannides R
    Atherosclerosis; 2010 Aug; 211(2):486-91. PubMed ID: 20452592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.