These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 10764801)

  • 41. Structural studies on membrane-embedded influenza hemagglutinin and its fragments.
    Gray C; Tamm LK
    Protein Sci; 1997 Sep; 6(9):1993-2006. PubMed ID: 9300499
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Micellar environments induce structuring of the N-terminal tail of the prion protein.
    Renner C; Fiori S; Fiorino F; Landgraf D; Deluca D; Mentler M; Grantner K; Parak FG; Kretzschmar H; Moroder L
    Biopolymers; 2004 Mar; 73(4):421-33. PubMed ID: 14991659
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Aqueous solubility and membrane interactions of hydrophobic peptides with peptoid tags.
    Tang YC; Deber CM
    Biopolymers; 2004; 76(2):110-8. PubMed ID: 15054891
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Architecture of the hepatitis C virus E1 glycoprotein transmembrane domain studied by NMR.
    Zazrin H; Shaked H; Chill JH
    Biochim Biophys Acta; 2014 Mar; 1838(3):784-92. PubMed ID: 24192053
    [TBL] [Abstract][Full Text] [Related]  

  • 45. NMR structures of the C-terminal segment of surfactant protein B in detergent micelles and hexafluoro-2-propanol.
    Booth V; Waring AJ; Walther FJ; Keough KM
    Biochemistry; 2004 Dec; 43(48):15187-94. PubMed ID: 15568810
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The helix-hinge-helix structural motif in human apolipoprotein A-I determined by NMR spectroscopy.
    Wang G; Sparrow JT; Cushley RJ
    Biochemistry; 1997 Nov; 36(44):13657-66. PubMed ID: 9354635
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Terminal residue hydrophobicity modulates transmembrane helix-helix interactions.
    Ng DP; Deber CM
    Biochemistry; 2014 Jun; 53(23):3747-57. PubMed ID: 24857611
    [TBL] [Abstract][Full Text] [Related]  

  • 48. PhoE signal peptide inserts into micelles as a dynamic helix-break-helix structure, which is modulated by the environment. A two-dimensional 1H NMR study.
    Chupin V; Killian JA; Breg J; de Jongh HH; Boelens R; Kaptein R; de Kruijff B
    Biochemistry; 1995 Sep; 34(36):11617-24. PubMed ID: 7547893
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Studies on the primary structure of the influenza virus hemagglutinin.
    Skehel JJ; Waterfield MD
    Proc Natl Acad Sci U S A; 1975 Jan; 72(1):93-7. PubMed ID: 1054518
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Stabilities of the Soluble Ectodomain and Fusion Peptide Hairpins of the Influenza Virus Hemagglutinin Subunit II Protein Are Positively Correlated with Membrane Fusion.
    Ranaweera A; Ratnayake PU; Weliky DP
    Biochemistry; 2018 Sep; 57(37):5480-5493. PubMed ID: 30141905
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Surfactant-induced conformational transition of amyloid beta-peptide.
    Sureshbabu N; Kirubagaran R; Jayakumar R
    Eur Biophys J; 2009 Apr; 38(4):355-67. PubMed ID: 19005650
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Secondary structure and position of the cell-penetrating peptide transportan in SDS micelles as determined by NMR.
    Lindberg M; Jarvet J; Langel U; Gräslund A
    Biochemistry; 2001 Mar; 40(10):3141-9. PubMed ID: 11258929
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The membrane topology of the fusion peptide region of influenza hemagglutinin determined by spin-labeling EPR.
    Macosko JC; Kim CH; Shin YK
    J Mol Biol; 1997 Apr; 267(5):1139-48. PubMed ID: 9150402
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Conformational aspects of the acid-induced fusion mechanism of influenza virus hemagglutinin. Circular dichroism and fluorescence studies.
    Wharton SA; Ruigrok RW; Martin SR; Skehel JJ; Bayley PM; Weis W; Wiley DC
    J Biol Chem; 1988 Mar; 263(9):4474-80. PubMed ID: 3346256
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interaction of mutant influenza virus hemagglutinin fusion peptides with lipid bilayers: probing the role of hydrophobic residue size in the central region of the fusion peptide.
    Han X; Steinhauer DA; Wharton SA; Tamm LK
    Biochemistry; 1999 Nov; 38(45):15052-9. PubMed ID: 10555988
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Membrane destabilization by N-terminal peptides of viral envelope proteins.
    Düzgüneş N; Shavnin SA
    J Membr Biol; 1992 May; 128(1):71-80. PubMed ID: 1323686
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Linker and/or transmembrane regions of influenza A/Group-1, A/Group-2, and type B virus hemagglutinins are packed differently within trimers.
    Kordyukova LV; Serebryakova MV; Polyansky AA; Kropotkina EA; Alexeevski AV; Veit M; Efremov RG; Filippova IY; Baratova LA
    Biochim Biophys Acta; 2011 Jul; 1808(7):1843-54. PubMed ID: 21420932
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Spectroscopic studies of a phosphoinositide-binding peptide from gelsolin: behavior in solutions of mixed solvent and anionic micelles.
    Xian W; Vegners R; Janmey PA; Braunlin WH
    Biophys J; 1995 Dec; 69(6):2695-702. PubMed ID: 8599675
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Conformation and lipid binding of the N-terminal (1-44) domain of human apolipoprotein A-I.
    Zhu HL; Atkinson D
    Biochemistry; 2004 Oct; 43(41):13156-64. PubMed ID: 15476409
    [TBL] [Abstract][Full Text] [Related]  

  • 60. pH-induced conformational changes of membrane-bound influenza hemagglutinin and its effect on target lipid bilayers.
    Gray C; Tamm LK
    Protein Sci; 1998 Nov; 7(11):2359-73. PubMed ID: 9828002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.