BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 10764841)

  • 1. Use of recombinant endomannosidase for evaluation of the processing of N-linked oligosaccharides of glycoproteins and their oligosaccharide-lipid precursors.
    Spiro MJ; Spiro RG
    Glycobiology; 2000 May; 10(5):521-9. PubMed ID: 10764841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Processing of viral envelope glycoprotein by the endomannosidase pathway: evaluation of host cell specificity.
    Karaivanova VK; Luan P; Spiro RG
    Glycobiology; 1998 Jul; 8(7):725-30. PubMed ID: 9621113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of endomannosidase inhibitors and evaluation of their effect on N-linked oligosaccharide processing during glycoprotein biosynthesis.
    Hiraizumi S; Spohr U; Spiro RG
    J Biol Chem; 1993 May; 268(13):9927-35. PubMed ID: 8486671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Release of polymannose oligosaccharides from vesicular stomatitis virus G protein during endoplasmic reticulum-associated degradation.
    Spiro MJ; Spiro RG
    Glycobiology; 2001 Oct; 11(10):803-11. PubMed ID: 11588156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenetic survey of endomannosidase indicates late evolutionary appearance of this N-linked oligosaccharide processing enzyme.
    Dairaku K; Spiro RG
    Glycobiology; 1997 Jun; 7(4):579-86. PubMed ID: 9184840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the role of rat liver Golgi endo-alpha-D-mannosidase in processing N-linked oligosaccharides.
    Lubas WA; Spiro RG
    J Biol Chem; 1988 Mar; 263(8):3990-8. PubMed ID: 3346233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonselective utilization of the endomannosidase pathway for processing glycoproteins by human hepatoma (HepG2) cells.
    Rabouille C; Spiro RG
    J Biol Chem; 1992 Jun; 267(16):11573-8. PubMed ID: 1317871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Definition of the lectin-like properties of the molecular chaperone, calreticulin, and demonstration of its copurification with endomannosidase from rat liver Golgi.
    Spiro RG; Zhu Q; Bhoyroo V; Söling HD
    J Biol Chem; 1996 May; 271(19):11588-94. PubMed ID: 8626722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration that Golgi endo-alpha-D-mannosidase provides a glucosidase-independent pathway for the formation of complex N-linked oligosaccharides of glycoproteins.
    Moore SE; Spiro RG
    J Biol Chem; 1990 Aug; 265(22):13104-12. PubMed ID: 2165493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oligomannosides or oligosaccharide-lipids as potential substrates for rat liver cytosolic alpha-D-mannosidase.
    Grard T; Herman V; Saint-Pol A; Kmiecik D; Labiau O; Mir AM; Alonso C; Verbert A; Cacan R; Michalski JC
    Biochem J; 1996 Jun; 316 ( Pt 3)(Pt 3):787-92. PubMed ID: 8670153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endomannosidase processes oligosaccharides of alpha1-antitrypsin and its naturally occurring genetic variants in the Golgi apparatus.
    Torossi T; Fan JY; Sauter-Etter K; Roth J; Ziak M
    Cell Mol Life Sci; 2006 Aug; 63(16):1923-32. PubMed ID: 16871372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration that endoplasmic reticulum-associated degradation of glycoproteins can occur downstream of processing by endomannosidase.
    Kukushkin NV; Alonzi DS; Dwek RA; Butters TD
    Biochem J; 2011 Aug; 438(1):133-42. PubMed ID: 21585340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulphation of N-linked oligosaccharides of vesicular stomatitis and influenza virus envelope glycoproteins: host cell specificity, subcellular localization and identification of substituted saccharides.
    Karaivanova VK; Spiro RG
    Biochem J; 1998 Feb; 329 ( Pt 3)(Pt 3):511-8. PubMed ID: 9445377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hazelhurst-vesicular-stomatitis-virus G and Sindbis-virus E1 glycoproteins undergo similar host-cell-dependent variation in oligosaccharide processing.
    Davidson SK; Hunt LA
    Biochem J; 1985 Jul; 229(1):47-55. PubMed ID: 2994631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the endomannosidase pathway for the processing of N-linked oligosaccharides in glucosidase II-deficient and parent mouse lymphoma cells.
    Moore SE; Spiro RG
    J Biol Chem; 1992 Apr; 267(12):8443-51. PubMed ID: 1533222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the early processing routes of N-linked oligosaccharides of glycoproteins through the characterization of Man8GlcNAc2 isomers: evidence that endomannosidase functions in vivo in the absence of a glucosidase blockade.
    Weng S; Spiro RG
    Glycobiology; 1996 Dec; 6(8):861-8. PubMed ID: 9023549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recognition of the oligosaccharide and protein moieties of glycoproteins by the UDP-Glc:glycoprotein glucosyltransferase.
    Sousa MC; Ferrero-Garcia MA; Parodi AJ
    Biochemistry; 1992 Jan; 31(1):97-105. PubMed ID: 1531024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glucose persistence on high-mannose oligosaccharides selectively inhibits the macroautophagic sequestration of N-linked glycoproteins.
    Ogier-Denis E; Bauvy C; Cluzeaud F; Vandewalle A; Codogno P
    Biochem J; 2000 Feb; 345 Pt 3(Pt 3):459-66. PubMed ID: 10642502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Asparagine-linked glycoprotein biosynthesis in rat brain: identification of glucosidase I, glucosidase II, and and endomannosidase (glucosyl mannosidase).
    Tulsiani DR; Coleman VD; Touster O
    Arch Biochem Biophys; 1990 Feb; 277(1):114-21. PubMed ID: 2407194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a novel mechanism for the removal of glucose residues from high mannose-type oligosaccharides.
    Suh K; Gabel CA; Bergmann JE
    J Biol Chem; 1992 Oct; 267(30):21671-7. PubMed ID: 1328242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.