These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 10764996)

  • 41. Acetylcholine-induced arteriolar dilation is reduced in streptozotocin-induced diabetic rats with motor nerve dysfunction.
    Terata K; Coppey LJ; Davidson EP; Dunlap JA; Gutterman DD; Yorek MA
    Br J Pharmacol; 1999 Oct; 128(3):837-43. PubMed ID: 10516670
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular mechanisms of diabetic coronary dysfunction due to large conductance Ca2⁺-activated K⁺ channel impairment.
    Wang RX; Shi HF; Chai Q; Wu Y; Sun W; Ji Y; Yao Y; Li KL; Zhang CY; Zheng J; Guo SX; Li XR; Lu T
    Chin Med J (Engl); 2012 Jul; 125(14):2548-55. PubMed ID: 22882938
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mechanisms underlying pervanadate-induced contraction of rat cremaster muscle arterioles.
    Murphy TV; Spurrell BE; Hill MA
    Eur J Pharmacol; 2002 May; 442(1-2):107-14. PubMed ID: 12020688
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Vascular endothelium and smooth muscle remodeling accompanies hypertrophy of intestinal arterioles in streptozotocin diabetic rats.
    Connors BA; Bohlen HG; Evan AP
    Microvasc Res; 1995 May; 49(3):340-9. PubMed ID: 7643753
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Endothelial K(ca) channels mediate flow-dependent dilation of arterioles of skeletal muscle and mesentery.
    Sun D; Huang A; Koller A; Kaley G
    Microvasc Res; 2001 Mar; 61(2):179-86. PubMed ID: 11254397
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interleukin-1 and interleukin-6 mediated skeletal muscle arteriolar vasodilation: in vitro versus in vivo studies.
    Minghini A; Britt LD; Hill MA
    Shock; 1998 Mar; 9(3):210-5. PubMed ID: 9525329
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Alterations in distribution of cardiac output in experimental diabetes in rats.
    Hill MA; Larkins RG
    Am J Physiol; 1989 Aug; 257(2 Pt 2):H571-80. PubMed ID: 2669529
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Structural and functional origins of suppressed acetylcholine vasodilation in diabetic rat intestinal arterioles.
    Lash JM; Bohlen HG
    Circ Res; 1991 Nov; 69(5):1259-68. PubMed ID: 1934356
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High dietary salt alters arteriolar myogenic responsiveness in normotensive and hypertensive rats.
    Nurkiewicz TR; Boegehold MA
    Am J Physiol; 1998 Dec; 275(6):H2095-104. PubMed ID: 9843809
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Diabetes downregulates large-conductance Ca2+-activated potassium beta 1 channel subunit in retinal arteriolar smooth muscle.
    McGahon MK; Dash DP; Arora A; Wall N; Dawicki J; Simpson DA; Scholfield CN; McGeown JG; Curtis TM
    Circ Res; 2007 Mar; 100(5):703-11. PubMed ID: 17293477
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modification of myogenic intrinsic tone and [Ca2+]i of rat isolated arterioles by ryanodine and cyclopiazonic acid.
    Watanabe J; Karibe A; Horiguchi S; Keitoku M; Satoh S; Takishima T; Shirato K
    Circ Res; 1993 Sep; 73(3):465-72. PubMed ID: 8348691
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hyporeactivity of rat diaphragmatic arterioles after exposure to hypoxia in vivo. Role of the endothelium.
    Toporsian M; Ward ME
    Am J Respir Crit Care Med; 1997 Nov; 156(5):1572-8. PubMed ID: 9372678
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Limitation of arteriolar myogenic activity by local nitric oxide: segment-specific effect of dietary salt.
    Nurkiewicz TR; Boegehold MA
    Am J Physiol; 1999 Nov; 277(5):H1946-55. PubMed ID: 10564151
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of local reduction in pressure on distensibility and composition of cerebral arterioles.
    Baumbach GL; Siems JE; Heistad DD
    Circ Res; 1991 Feb; 68(2):338-51. PubMed ID: 1991342
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Endothelial cell calcium and vascular control.
    Falcone JC
    Med Sci Sports Exerc; 1995 Aug; 27(8):1165-9. PubMed ID: 7476061
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanics and composition of arterioles in brain stem and cerebrum.
    Baumbach GL; Siems JE; Faraci FM; Heistad DD
    Am J Physiol; 1989 Feb; 256(2 Pt 2):H493-501. PubMed ID: 2916682
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanism of impaired responses of cerebral arterioles during diabetes mellitus.
    Mayhan WG; Simmons LK; Sharpe GM
    Am J Physiol; 1991 Feb; 260(2 Pt 2):H319-26. PubMed ID: 1825454
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of combined antisense oligonucleotides against high-glucose- and diabetes-induced overexpression of extracellular matrix components and increased vascular permeability.
    Oshitari T; Polewski P; Chadda M; Li AF; Sato T; Roy S
    Diabetes; 2006 Jan; 55(1):86-92. PubMed ID: 16380480
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Endothelial independence of myogenic response in isolated skeletal muscle arterioles.
    Falcone JC; Davis MJ; Meininger GA
    Am J Physiol; 1991 Jan; 260(1 Pt 2):H130-5. PubMed ID: 1992791
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Relative contributions of Ca2+ mobilization and influx in renal arteriolar contractile responses to arginine vasopressin.
    Fallet RW; Ikenaga H; Bast JP; Carmines PK
    Am J Physiol Renal Physiol; 2005 Mar; 288(3):F545-51. PubMed ID: 15536171
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.