These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 10765419)

  • 1. Sensitivity of concentration and risk predictions in the PRESTO and MMSOILS multimedia models: regression technique assessment.
    Mills WB; Lew CS; Hung CY
    Risk Anal; 1999 Jun; 19(3):511-25. PubMed ID: 10765419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multimedia benchmarking analysis for three risk assessment models: RESRAD, MMSOILS, and MEPAS.
    Mills WB; Cheng JJ; Droppo JG; Faillace ER; Gnanapragasam EK; Johns RA; Laniak GF; Lew CS; Strenge DL; Sutherland JF; Whelan G; Yu C
    Risk Anal; 1997 Apr; 17(2):187-201. PubMed ID: 9202488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity of key factors and uncertainties in health risk assessment of benzene pollutant.
    Liu ZQ; Zhang YH; Li GH; Zhang X
    J Environ Sci (China); 2007; 19(10):1272-80. PubMed ID: 18062430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An overview of a multimedia benchmarking analysis for three risk assessment models: RESRAD, MMSOILS, and MEPAS.
    Laniak GF; Droppo JG; Faillace ER; Gnanapragasam EK; Mills WB; Strenge DL; Whelan G; Yu C
    Risk Anal; 1997 Apr; 17(2):203-14. PubMed ID: 9202489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model comparison for risk assessment: a case study of contaminated groundwater.
    Chen YC; Ma HW
    Chemosphere; 2006 May; 63(5):751-61. PubMed ID: 16213568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depleted uranium residual radiological risk assessment for Kosovo sites.
    Durante M; Pugliese M
    J Environ Radioact; 2003; 64(2-3):237-45. PubMed ID: 12500808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uranium in the environment: occurrence, transfer, and biological effects.
    Ribera D; Labrot F; Tisnerat G; Narbonne JF
    Rev Environ Contam Toxicol; 1996; 146():53-89. PubMed ID: 8714221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of multimedia models applied to the risk assessment of soil and groundwater contamination sites in Taiwan.
    Fan C; Chen YC; Ma HW; Wang GS
    J Hazard Mater; 2010 Oct; 182(1-3):778-86. PubMed ID: 20650563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.
    Bea SA; Wainwright H; Spycher N; Faybishenko B; Hubbard SS; Denham ME
    J Contam Hydrol; 2013 Aug; 151():34-54. PubMed ID: 23707874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulating bioremediation of uranium-contaminated aquifers; uncertainty assessment of model parameters.
    Wang S; Jaffé PR; Li G; Wang SW; Rabitz HA
    J Contam Hydrol; 2003 Jul; 64(3-4):283-307. PubMed ID: 12814885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone.
    Zachara JM; Long PE; Bargar J; Davis JA; Fox P; Fredrickson JK; Freshley MD; Konopka AE; Liu C; McKinley JP; Rockhold ML; Williams KH; Yabusaki SB
    J Contam Hydrol; 2013 Apr; 147():45-72. PubMed ID: 23500840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of measured and predicted environmental PCB concentrations using simple compartmental models.
    Cullen A
    Environ Sci Technol; 2002 May; 36(9):2033-8. PubMed ID: 12026989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Health risk assessment for uranium in Korean groundwater.
    Kim YS; Park HS; Kim JY; Park SK; Cho BW; Sung IH; Shin DC
    J Environ Radioact; 2004; 77(1):77-85. PubMed ID: 15297042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions.
    Conant B; Cherry JA; Gillham RW
    J Contam Hydrol; 2004 Sep; 73(1-4):249-79. PubMed ID: 15336797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishing a geochemical heterogeneity model for a contaminated vadose zone--aquifer system.
    Murray CJ; Zachara JM; McKinley JP; Ward A; Bott YJ; Draper K; Moore D
    J Contam Hydrol; 2013 Oct; 153():122-40. PubMed ID: 23664489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Groundwater radon, radium and uranium concentrations in Região dos Lagos, Rio de Janeiro State, Brazil.
    Almeida RM; Lauria DC; Ferreira AC; Sracek O
    J Environ Radioact; 2004; 73(3):323-34. PubMed ID: 15050363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A physically based approach to modelling radionuclide transport in the biosphere.
    Parkin G; Anderton SP; Ewen J; O'Donnell GM; Thorne MC; Crossland IG
    J Radiol Prot; 1999 Dec; 19(4):319-31. PubMed ID: 10616778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the adequacy of maximum contaminant levels as health-protective cleanup goals: an analysis based on Monte Carlo techniques.
    Finley BL; Scott P; Paustenbach DJ
    Regul Toxicol Pharmacol; 1993 Dec; 18(3):438-55. PubMed ID: 8128005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of thermodynamic data on computer model predictions of uranium speciation in natural water systems.
    Unsworth ER; Jones P; Hill SJ
    J Environ Monit; 2002 Aug; 4(4):528-32. PubMed ID: 12195995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identifying the sources of subsurface contamination at the Hanford Site in Washington using high-precision uranium isotopic measurements.
    Christensen JN; Dresel PE; Conrad ME; Maher K; DePaolo DJ
    Environ Sci Technol; 2004 Jun; 38(12):3330-7. PubMed ID: 15260332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.