BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 10766197)

  • 21. p53 loss of function enhances genomic instability and accelerates clonal evolution of murine myeloid progenitors expressing the p(210)BCR-ABL tyrosine kinase.
    Brusa G; Benvenuti M; Mazzacurati L; Mancini M; Pattacini L; Martinelli G; Barbieri E; Greenberger JS; Baccarani M; Santucci MA
    Haematologica; 2003 Jun; 88(6):622-30. PubMed ID: 12801837
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bcr-Abl protein tyrosine kinase activity induces a loss of p53 protein that mediates a delay in myeloid differentiation.
    Pierce A; Spooncer E; Wooley S; Dive C; Francis JM; Miyan J; Owen-Lynch PJ; Dexter TM; Whetton AD
    Oncogene; 2000 Nov; 19(48):5487-97. PubMed ID: 11114726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Molecular analysis of transformation into blast crisis in chronic myelogenous leukemia].
    Okabe M
    Hokkaido Igaku Zasshi; 1993 Mar; 68(2):237-50. PubMed ID: 8509066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detailed mapping of methylcytosine positions at the CpG island surrounding the Pa promoter at the bcr-abl locus in CML patients and in two cell lines, K562 and BV173.
    Fajkusová L; Fajkus J; Polácková K; Fulnecek J; Dvoráková D; Krahulcová E
    Blood Cells Mol Dis; 2000 Jun; 26(3):193-204. PubMed ID: 10950939
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Tyrosine kinase inhibitor STI571: new possibility in the treatment of chronic myeloid leukemia].
    Molnár L; Losonczy H
    Orv Hetil; 2002 Oct; 143(42):2379-84. PubMed ID: 12440260
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of mutational inactivation of tyrosine kinase activity on BCR/ABL-induced abnormalities in cell growth and adhesion in human hematopoietic progenitors.
    Ramaraj P; Singh H; Niu N; Chu S; Holtz M; Yee JK; Bhatia R
    Cancer Res; 2004 Aug; 64(15):5322-31. PubMed ID: 15289338
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular insights into the Philadelphia translocation.
    Heisterkamp N; Groffen J
    Hematol Pathol; 1991; 5(1):1-10. PubMed ID: 2050600
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Molecular pathogenesis of chronic myeloid leukemia].
    Sasaki K; Mitani K
    Nihon Rinsho; 2009 Oct; 67(10):1894-9. PubMed ID: 19860186
    [TBL] [Abstract][Full Text] [Related]  

  • 29. BCR-ABL induces the expression of Skp2 through the PI3K pathway to promote p27Kip1 degradation and proliferation of chronic myelogenous leukemia cells.
    Andreu EJ; Lledó E; Poch E; Ivorra C; Albero MP; Martínez-Climent JA; Montiel-Duarte C; Rifón J; Pérez-Calvo J; Arbona C; Prósper F; Pérez-Roger I
    Cancer Res; 2005 Apr; 65(8):3264-72. PubMed ID: 15833859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Suppression of bcr-abl synthesis by siRNAs or tyrosine kinase activity by Glivec alters different oncogenes, apoptotic/antiapoptotic genes and cell proliferation factors (microarray study).
    Zhelev Z; Bakalova R; Ohba H; Ewis A; Ishikawa M; Shinohara Y; Baba Y
    FEBS Lett; 2004 Jul; 570(1-3):195-204. PubMed ID: 15251464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Detection of bcr/abl gene expression on bone marrow cell colonies in chronic myelogenous leukemia by reverse transcriptase-polymerase chain reaction].
    Luo Z; Chen H; Luo S; Tang L; Wang J
    Hunan Yi Ke Da Xue Xue Bao; 1999; 24(5):418-20. PubMed ID: 12080671
    [TBL] [Abstract][Full Text] [Related]  

  • 32. p210BCR-ABL inhibits SDF-1 chemotactic response via alteration of CXCR4 signaling and down-regulation of CXCR4 expression.
    Geay JF; Buet D; Zhang Y; Foudi A; Jarrier P; Berthebaud M; Turhan AG; Vainchenker W; Louache F
    Cancer Res; 2005 Apr; 65(7):2676-83. PubMed ID: 15805265
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Important therapeutic targets in chronic myelogenous leukemia.
    Kantarjian HM; Giles F; Quintás-Cardama A; Cortes J
    Clin Cancer Res; 2007 Feb; 13(4):1089-97. PubMed ID: 17317816
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Leukemogenesis and new therapy development: the example of chronic myelogenous leukemia].
    Etienne G; Mahon FX
    Bull Cancer; 2001 Jul; 88(7):651-8. PubMed ID: 11495816
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphorylation levels of BCR-ABL, CrkL, AKT and STAT5 in imatinib-resistant chronic myeloid leukemia cells implicate alternative pathway usage as a survival strategy.
    Jilani I; Kantarjian H; Gorre M; Cortes J; Ottmann O; Bhalla K; Giles FJ; Albitar M
    Leuk Res; 2008 Apr; 32(4):643-9. PubMed ID: 17900686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biology of chronic myelogenous leukemia--signaling pathways of initiation and transformation.
    Melo JV; Deininger MW
    Hematol Oncol Clin North Am; 2004 Jun; 18(3):545-68, vii-viii. PubMed ID: 15271392
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Molecular basis of chronic granulocytic leukemia: from test-tube to patient].
    Skórski T
    Acta Haematol Pol; 1994; 25(2 Suppl 1):184-91. PubMed ID: 8067203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phenotypic and gene expression diversity of malignant cells in human blast crisis chronic myeloid leukemia.
    Simanovsky M; Berlinsky S; Sinai P; Leiba M; Nagler A; Galski H
    Differentiation; 2008 Oct; 76(8):908-22. PubMed ID: 18452548
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent advances in molecular biology of chronic myeloid leukaemia: is the pathogenetic puzzle approaching solution?
    Goldman JM
    Bone Marrow Transplant; 1989 Jan; 4 Suppl 1():129-30. PubMed ID: 2496882
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Inhibition of Grb2 and Crkl proteins results in growth inhibition of Philadelphia chromosome positive leukemic cells.
    Tari AM; Arlinghaus R; Lopez-Berestein G
    Biochem Biophys Res Commun; 1997 Jun; 235(2):383-8. PubMed ID: 9199202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.