These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 10766238)

  • 41. Cyclic acetal hydrogel system for bone marrow stromal cell encapsulation and osteodifferentiation.
    Betz MW; Modi PC; Caccamese JF; Coletti DP; Sauk JJ; Fisher JP
    J Biomed Mater Res A; 2008 Sep; 86(3):662-70. PubMed ID: 18022839
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enzyme-catalysed assembly of DNA hydrogel.
    Um SH; Lee JB; Park N; Kwon SY; Umbach CC; Luo D
    Nat Mater; 2006 Oct; 5(10):797-801. PubMed ID: 16998469
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Controlled release of drugs from multi-component biomaterials.
    Zalfen AM; Nizet D; Jérôme C; Jérôme R; Frankenne F; Foidart JM; Maquet V; Lecomte F; Hubert P; Evrard B
    Acta Biomater; 2008 Nov; 4(6):1788-96. PubMed ID: 18583206
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Autonomous microfluidics with stimuli-responsive hydrogels.
    Dong L; Jiang H
    Soft Matter; 2007 Sep; 3(10):1223-1230. PubMed ID: 32900089
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microfluidic valves with integrated structured elastomeric membranes for reversible fluidic entrapment and in situ channel functionalization.
    Vanapalli SA; Wijnperle D; van den Berg A; Mugele F; Duits MH
    Lab Chip; 2009 May; 9(10):1461-7. PubMed ID: 19417915
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microfluidic assembly blocks.
    Rhee M; Burns MA
    Lab Chip; 2008 Aug; 8(8):1365-73. PubMed ID: 18651080
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis and characterization of cyclic acetal based degradable hydrogels.
    Kaihara S; Matsumura S; Fisher JP
    Eur J Pharm Biopharm; 2008 Jan; 68(1):67-73. PubMed ID: 17888640
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Glucose responsive hydrogel networks based on protein recognition.
    Ehrick JD; Luckett MR; Khatwani S; Wei Y; Deo SK; Bachas LG; Daunert S
    Macromol Biosci; 2009 Sep; 9(9):864-8. PubMed ID: 19434674
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Low-distortion, high-strength bonding of thermoplastic microfluidic devices employing case-II diffusion-mediated permeant activation.
    Wallow TI; Morales AM; Simmons BA; Hunter MC; Krafcik KL; Domeier LA; Sickafoose SM; Patel KD; Gardea A
    Lab Chip; 2007 Dec; 7(12):1825-31. PubMed ID: 18030407
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Microfluidic assembly of homogeneous and Janus colloid-filled hydrogel granules.
    Shepherd RF; Conrad JC; Rhodes SK; Link DR; Marquez M; Weitz DA; Lewis JA
    Langmuir; 2006 Oct; 22(21):8618-22. PubMed ID: 17014093
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Photo gel-sol/sol-gel transition and its patterning of a supramolecular hydrogel as stimuli-responsive biomaterials.
    Matsumoto S; Yamaguchi S; Ueno S; Komatsu H; Ikeda M; Ishizuka K; Iko Y; Tabata KV; Aoki H; Ito S; Noji H; Hamachi I
    Chemistry; 2008; 14(13):3977-86. PubMed ID: 18335444
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Model development and numerical simulation of electric-stimulus-responsive hydrogels subject to an externally applied electric field.
    Li H; Yuan Z; Lam KY; Lee HP; Chen J; Hanes J; Fu J
    Biosens Bioelectron; 2004 Apr; 19(9):1097-107. PubMed ID: 15018965
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microfluidic biosensor based on an array of hydrogel-entrapped enzymes.
    Heo J; Crooks RM
    Anal Chem; 2005 Nov; 77(21):6843-51. PubMed ID: 16255581
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio.
    Hattori K; Sugiura S; Kanamori T
    Lab Chip; 2009 Jun; 9(12):1763-72. PubMed ID: 19495461
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication of Microfluidic Valves Using a Hydrogel Molding Method.
    Sugiura Y; Hirama H; Torii T
    Sci Rep; 2015 Aug; 5():13375. PubMed ID: 26300303
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molding of hydrogel microstructures to create multiphenotype cell microarrays.
    Koh WG; Itle LJ; Pishko MV
    Anal Chem; 2003 Nov; 75(21):5783-9. PubMed ID: 14588018
    [TBL] [Abstract][Full Text] [Related]  

  • 57. DNA-responsive hydrogels that can shrink or swell.
    Murakami Y; Maeda M
    Biomacromolecules; 2005; 6(6):2927-9. PubMed ID: 16283709
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microfluidic self-assembly of insulin monomers into amyloid fibrils on a solid surface.
    Lee JS; Um E; Park JK; Park CB
    Langmuir; 2008 Jul; 24(14):7068-71. PubMed ID: 18549255
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Determination of swelling of responsive gels with nanometer resolution. Fiber-optic based platform for hydrogels as signal transducers.
    Tierney S; Hjelme DR; Stokke BT
    Anal Chem; 2008 Jul; 80(13):5086-93. PubMed ID: 18491924
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The characteristics of spontaneously forming physically cross-linked hydrogels composed of two water-soluble phospholipid polymers for oral drug delivery carrier I: hydrogel dissolution and insulin release under neutral pH condition.
    Nam K; Watanabe J; Ishihara K
    Eur J Pharm Sci; 2004 Nov; 23(3):261-70. PubMed ID: 15489127
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.