These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 10766788)
1. Identification of the proximal ligand His-20 in heme oxygenase (Hmu O) from Corynebacterium diphtheriae. Oxidative cleavage of the heme macrocycle does not require the proximal histidine. Wilks A; Moënne-Loccoz P J Biol Chem; 2000 Apr; 275(16):11686-92. PubMed ID: 10766788 [TBL] [Abstract][Full Text] [Related]
2. Histidine 20, the crucial proximal axial heme ligand of bacterial heme oxygenase Hmu O from Corynebacterium diphtheriae. Chu GC; Katakura K; Tomita T; Zhang X; Sun D; Sato M; Sasahara M; Kayama T; Ikeda-Saito M; Yoshida T J Biol Chem; 2000 Jun; 275(23):17494-500. PubMed ID: 10751393 [TBL] [Abstract][Full Text] [Related]
3. The heme complex of Hmu O, a bacterial heme degradation enzyme from Corynebacterium diphtheriae. Structure of the catalytic site. Chu GC; Tomita T; Sönnichsen FD; Yoshida T; Ikeda-Saito M J Biol Chem; 1999 Aug; 274(35):24490-6. PubMed ID: 10455111 [TBL] [Abstract][Full Text] [Related]
4. Heme degradation as catalyzed by a recombinant bacterial heme oxygenase (Hmu O) from Corynebacterium diphtheriae. Chu GC; Katakura K; Zhang X; Yoshida T; Ikeda-Saito M J Biol Chem; 1999 Jul; 274(30):21319-25. PubMed ID: 10409691 [TBL] [Abstract][Full Text] [Related]
5. Expression and characterization of a heme oxygenase (Hmu O) from Corynebacterium diphtheriae. Iron acquisition requires oxidative cleavage of the heme macrocycle. Wilks A; Schmitt MP J Biol Chem; 1998 Jan; 273(2):837-41. PubMed ID: 9422739 [TBL] [Abstract][Full Text] [Related]
6. Identification of histidine 25 as the heme ligand in human liver heme oxygenase. Sun J; Loehr TM; Wilks A; Ortiz de Montellano PR Biochemistry; 1994 Nov; 33(46):13734-40. PubMed ID: 7947784 [TBL] [Abstract][Full Text] [Related]
7. Mixed regioselectivity in the Arg-177 mutants of Corynebacterium diphtheriae heme oxygenase as a consequence of in-plane heme disorder. Zeng Y; Deshmukh R; Caignan GA; Bunce RA; Rivera M; Wilks A Biochemistry; 2004 May; 43(18):5222-38. PubMed ID: 15122888 [TBL] [Abstract][Full Text] [Related]
8. Replacement of the proximal histidine iron ligand by a cysteine or tyrosine converts heme oxygenase to an oxidase. Liu Y; Moënne-Loccoz P; Hildebrand DP; Wilks A; Loehr TM; Mauk AG; Ortiz de Montellano PR Biochemistry; 1999 Mar; 38(12):3733-43. PubMed ID: 10090762 [TBL] [Abstract][Full Text] [Related]
9. Heme utilization by pathogenic bacteria: not all pathways lead to biliverdin. Wilks A; Ikeda-Saito M Acc Chem Res; 2014 Aug; 47(8):2291-8. PubMed ID: 24873177 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of the dioxygen-bound heme oxygenase from Corynebacterium diphtheriae: implications for heme oxygenase function. Unno M; Matsui T; Chu GC; Couture M; Yoshida T; Rousseau DL; Olson JS; Ikeda-Saito M J Biol Chem; 2004 May; 279(20):21055-61. PubMed ID: 14966119 [TBL] [Abstract][Full Text] [Related]
11. Crystallization and preliminary X-ray diffraction analysis of a recombinant bacterial heme oxygenase (Hmu O) from Corynebacterium diphtheriae. Chu GC; Park SY; Shiro Y; Yoshida T; Ikeda-Saito M J Struct Biol; 1999 Jun; 126(2):171-4. PubMed ID: 10388628 [TBL] [Abstract][Full Text] [Related]
12. Stereoselectivity of each of the three steps of the heme oxygenase reaction: hemin to meso-hydroxyhemin, meso-hydroxyhemin to verdoheme, and verdoheme to biliverdin. Zhang X; Fujii H; Matera KM; Migita CT; Sun D; Sato M; Ikeda-Saito M; Yoshida T Biochemistry; 2003 Jun; 42(24):7418-26. PubMed ID: 12809497 [TBL] [Abstract][Full Text] [Related]
13. The crystal structures of the ferric and ferrous forms of the heme complex of HmuO, a heme oxygenase of Corynebacterium diphtheriae. Hirotsu S; Chu GC; Unno M; Lee DS; Yoshida T; Park SY; Shiro Y; Ikeda-Saito M J Biol Chem; 2004 Mar; 279(12):11937-47. PubMed ID: 14645223 [TBL] [Abstract][Full Text] [Related]
14. Conformational change and histidine control of heme chemistry in cytochrome c peroxidase: resonance Raman evidence from Leu-52 and Gly-181 mutants of cytochrome c peroxidase. Smulevich G; Miller MA; Kraut J; Spiro TG Biochemistry; 1991 Oct; 30(39):9546-58. PubMed ID: 1654102 [TBL] [Abstract][Full Text] [Related]
15. Heme oxygenase reveals its strategy for catalyzing three successive oxygenation reactions. Matsui T; Unno M; Ikeda-Saito M Acc Chem Res; 2010 Feb; 43(2):240-7. PubMed ID: 19827796 [TBL] [Abstract][Full Text] [Related]
16. Oxidation of heme to beta- and delta-biliverdin by Pseudomonas aeruginosa heme oxygenase as a consequence of an unusual seating of the heme. Caignan GA; Deshmukh R; Wilks A; Zeng Y; Huang HW; Moënne-Loccoz P; Bunce RA; Eastman MA; Rivera M J Am Chem Soc; 2002 Dec; 124(50):14879-92. PubMed ID: 12475329 [TBL] [Abstract][Full Text] [Related]
17. Heme-heme oxygenase complex: structure and properties of the catalytic site from resonance Raman scattering. Takahashi S; Wang J; Rousseau DL; Ishikawa K; Yoshida T; Takeuchi N; Ikeda-Saito M Biochemistry; 1994 May; 33(18):5531-8. PubMed ID: 8180175 [TBL] [Abstract][Full Text] [Related]
19. Heme oxygenase-1, intermediates in verdoheme formation and the requirement for reduction equivalents. Liu Y; Moënne-Loccoz P; Loehr TM; Ortiz de Montellano PR J Biol Chem; 1997 Mar; 272(11):6909-17. PubMed ID: 9054378 [TBL] [Abstract][Full Text] [Related]
20. Protein expressed by the ho2 gene of the cyanobacterium Synechocystis sp. PCC 6803 is a true heme oxygenase. Properties of the heme and enzyme complex. Zhang X; Migita CT; Sato M; Sasahara M; Yoshida T FEBS J; 2005 Feb; 272(4):1012-22. PubMed ID: 15691334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]