BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 10766840)

  • 1. Ubiquitination of free cyclin D1 is independent of phosphorylation on threonine 286.
    Germain D; Russell A; Thompson A; Hendley J
    J Biol Chem; 2000 Apr; 275(16):12074-9. PubMed ID: 10766840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway.
    Diehl JA; Zindy F; Sherr CJ
    Genes Dev; 1997 Apr; 11(8):957-72. PubMed ID: 9136925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclin D1 degradation is sufficient to induce G1 cell cycle arrest despite constitutive expression of cyclin E2 in ovarian cancer cells.
    Masamha CP; Benbrook DM
    Cancer Res; 2009 Aug; 69(16):6565-72. PubMed ID: 19638577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A potential mechanism for fumonisin B(1)-mediated hepatocarcinogenesis: cyclin D1 stabilization associated with activation of Akt and inhibition of GSK-3beta activity.
    Ramljak D; Calvert RJ; Wiesenfeld PW; Diwan BA; Catipovic B; Marasas WF; Victor TC; Anderson LM; Gelderblom WC
    Carcinogenesis; 2000 Aug; 21(8):1537-46. PubMed ID: 10910956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GSK-3beta regulates cyclin D1 expression: a new target for chemotherapy.
    Takahashi-Yanaga F; Sasaguri T
    Cell Signal; 2008 Apr; 20(4):581-9. PubMed ID: 18023328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mirk/dyrk1B kinase destabilizes cyclin D1 by phosphorylation at threonine 288.
    Zou Y; Ewton DZ; Deng X; Mercer SE; Friedman E
    J Biol Chem; 2004 Jun; 279(26):27790-8. PubMed ID: 15075324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dictyostelium differentiation-inducing factor-3 activates glycogen synthase kinase-3beta and degrades cyclin D1 in mammalian cells.
    Takahashi-Yanaga F; Taba Y; Miwa Y; Kubohara Y; Watanabe Y; Hirata M; Morimoto S; Sasaguri T
    J Biol Chem; 2003 Mar; 278(11):9663-70. PubMed ID: 12522140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization.
    Diehl JA; Cheng M; Roussel MF; Sherr CJ
    Genes Dev; 1998 Nov; 12(22):3499-511. PubMed ID: 9832503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation.
    Alt JR; Cleveland JL; Hannink M; Diehl JA
    Genes Dev; 2000 Dec; 14(24):3102-14. PubMed ID: 11124803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turnover of cyclin E by the ubiquitin-proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation.
    Clurman BE; Sheaff RJ; Thress K; Groudine M; Roberts JM
    Genes Dev; 1996 Aug; 10(16):1979-90. PubMed ID: 8769642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Luteolin induces G1 arrest in human nasopharyngeal carcinoma cells via the Akt-GSK-3β-Cyclin D1 pathway.
    Ong CS; Zhou J; Ong CN; Shen HM
    Cancer Lett; 2010 Dec; 298(2):167-75. PubMed ID: 20655656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cycling to cancer with cyclin D1.
    Diehl JA
    Cancer Biol Ther; 2002; 1(3):226-31. PubMed ID: 12432268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estrogen-induced activation of Cdk4 and Cdk2 during G1-S phase progression is accompanied by increased cyclin D1 expression and decreased cyclin-dependent kinase inhibitor association with cyclin E-Cdk2.
    Prall OW; Sarcevic B; Musgrove EA; Watts CK; Sutherland RL
    J Biol Chem; 1997 Apr; 272(16):10882-94. PubMed ID: 9099745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential phosphorylation of the retinoblastoma protein by G1/S cyclin-dependent kinases.
    Zarkowska T; Mittnacht S
    J Biol Chem; 1997 May; 272(19):12738-46. PubMed ID: 9139732
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S-Phase entry upon ectopic expression of G1 cyclin-dependent kinases in the absence of retinoblastoma protein phosphorylation.
    Leng X; Connell-Crowley L; Goodrich D; Harper JW
    Curr Biol; 1997 Sep; 7(9):709-12. PubMed ID: 9285720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beta2-adrenergic receptor agonists and cAMP arrest human cultured airway smooth muscle cells in the G(1) phase of the cell cycle: role of proteasome degradation of cyclin D1.
    Stewart AG; Harris T; Fernandes DJ; Schachte LC; Koutsoubos V; Guida E; Ravenhall CE; Vadiveloo P; Wilson JW
    Mol Pharmacol; 1999 Nov; 56(5):1079-86. PubMed ID: 10531416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteasome-dependent degradation of cyclin D1 in 1-methyl-4-phenylpyridinium ion (MPP+)-induced cell cycle arrest.
    Bai J; Nakamura H; Ueda S; Kwon YW; Tanaka T; Ban S; Yodoi J
    J Biol Chem; 2004 Sep; 279(37):38710-4. PubMed ID: 15247282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progesterone inhibits the estrogen-induced phosphoinositide 3-kinase-->AKT-->GSK-3beta-->cyclin D1-->pRB pathway to block uterine epithelial cell proliferation.
    Chen B; Pan H; Zhu L; Deng Y; Pollard JW
    Mol Endocrinol; 2005 Aug; 19(8):1978-90. PubMed ID: 15845746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation-inducing factor-1 induces cyclin D1 degradation through the phosphorylation of Thr286 in squamous cell carcinoma.
    Mori J; Takahashi-Yanaga F; Miwa Y; Watanabe Y; Hirata M; Morimoto S; Shirasuna K; Sasaguri T
    Exp Cell Res; 2005 Nov; 310(2):426-33. PubMed ID: 16153639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of GSK-3beta and DYRK1B in differentiation-inducing factor-3-induced phosphorylation of cyclin D1 in HeLa cells.
    Takahashi-Yanaga F; Mori J; Matsuzaki E; Watanabe Y; Hirata M; Miwa Y; Morimoto S; Sasaguri T
    J Biol Chem; 2006 Dec; 281(50):38489-97. PubMed ID: 17046823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.