These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 10767058)

  • 41. Protein kinase C and intracellular calcium are required for amphetamine-mediated dopamine release via the norepinephrine transporter in undifferentiated PC12 cells.
    Kantor L; Hewlett GH; Park YH; Richardson-Burns SM; Mellon MJ; Gnegy ME
    J Pharmacol Exp Ther; 2001 Jun; 297(3):1016-24. PubMed ID: 11356924
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stimulatory role of calcium in rapid eye movement sleep deprivation-induced noradrenaline-mediated increase in Na-K-ATPase activity in rat brain.
    Das G; Gopalakrishnan A; Faisal M; Mallick BN
    Neuroscience; 2008 Jul; 155(1):76-89. PubMed ID: 18571330
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nicotine has a permissive role on the activation of metabotropic glutamate 5 receptors coexisting with nicotinic receptors on rat hippocampal noradrenergic nerve terminals.
    Parodi M; Patti L; Grilli M; Raiteri M; Marchi M
    Neurochem Int; 2006 Jan; 48(2):138-43. PubMed ID: 16214264
    [TBL] [Abstract][Full Text] [Related]  

  • 44. HDT-1, a new synthetic compound, inhibits glutamate release in rat cerebral cortex nerve terminals (synaptosomes).
    Wang SJ; Chou SH; Kuo YC; Chou SS; Tzeng WF; Leu JY; Huang RF; Liew YF
    Acta Pharmacol Sin; 2008 Nov; 29(11):1289-95. PubMed ID: 18954522
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Translocation of synapsin I in response to depolarization of isolated nerve terminals.
    Sihra TS; Wang JK; Gorelick FS; Greengard P
    Proc Natl Acad Sci U S A; 1989 Oct; 86(20):8108-12. PubMed ID: 2510160
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synapsin-dependent development of glutamatergic synaptic vesicles and presynaptic plasticity in postnatal mouse brain.
    Bogen IL; Jensen V; Hvalby O; Walaas SI
    Neuroscience; 2009 Jan; 158(1):231-41. PubMed ID: 18606212
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mechanisms underlying the riluzole inhibition of glutamate release from rat cerebral cortex nerve terminals (synaptosomes).
    Wang SJ; Wang KY; Wang WC
    Neuroscience; 2004; 125(1):191-201. PubMed ID: 15051158
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Technic for simultaneous recording of the uptake and secretion of 14C-noradrenaline by rat brain synaptosomes].
    Bazian AS; Glebov RN
    Biull Eksp Biol Med; 1981 Mar; 91(3):377-9. PubMed ID: 7248520
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synapsin I regulates glutamate release from rat brain synaptosomes.
    Nichols RA; Chilcote TJ; Czernik AJ; Greengard P
    J Neurochem; 1992 Feb; 58(2):783-5. PubMed ID: 1345942
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A rapid Percoll gradient procedure for isolation of synaptosomes directly from an S1 fraction: viability of subcellular fractions.
    Harrison SM; Jarvie PE; Dunkley PR
    Brain Res; 1988 Feb; 441(1-2):72-80. PubMed ID: 2834007
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Effect of gamma-aminobutyric acid on protoveratrine-induced Ca++-dependent release of 3H-noradrenaline from synaptosomes of the mesodiencephalic region of the rat brain].
    Armenian AR; Chiflikian MD
    Fiziol Zh SSSR Im I M Sechenova; 1981 Aug; 67(8):1265-8. PubMed ID: 7286341
    [No Abstract]   [Full Text] [Related]  

  • 52. Evidence for widespread effects of noradrenaline on axon terminals in the rat frontal cortex.
    Mobley P; Greengard P
    Proc Natl Acad Sci U S A; 1985 Feb; 82(3):945-7. PubMed ID: 2579383
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prostaglandin and noradrenaline interactions in rat brain synaptosomes [proceedings].
    Hillier K; Roberts PJ; Templeton WW
    Br J Pharmacol; 1979 May; 66(1):102P-103P. PubMed ID: 454898
    [No Abstract]   [Full Text] [Related]  

  • 54. Neuroethologically delineated differences in the seizure behavior of synapsin 1 and synapsin 2 knock-out mice.
    Etholm L; Bahonjic E; Walaas SI; Kao HT; Heggelund P
    Epilepsy Res; 2012 May; 99(3):252-9. PubMed ID: 22236379
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Studies on the mechanism of modulation of [(3)H]noradrenaline release from rat hippocampal synaptosomes by GABA and benzodiazepine receptors.
    Fung SC; Fillenz M
    Neurochem Int; 1985; 7(1):95-101. PubMed ID: 20492904
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of folic acid on noradrenaline stimulation of rat brain synaptosomes.
    Spector RG
    Br J Pharmacol; 1971 Oct; 43(2):438P. PubMed ID: 5158223
    [No Abstract]   [Full Text] [Related]  

  • 57. [Effect of pyrroxan and butyroxan on the concentration and release of norepinephrine in the brain of albino rats].
    Podosinovikiva MP; Lychakov AV; Krylov SS; Starykh NT
    Biull Eksp Biol Med; 1982 Mar; 93(3):42-4. PubMed ID: 7093481
    [No Abstract]   [Full Text] [Related]  

  • 58. [Incorporation of [3H] noradrenaline in brain synaptosomes of non mutant and quaking mice].
    Maurin Y; Baumann N; Pollet S
    C R Acad Hebd Seances Acad Sci D; 1977 Sep; 285(4):381-4. PubMed ID: 410513
    [No Abstract]   [Full Text] [Related]  

  • 59. Roles of the α
    Hernández-Espinosa DA; Alcántara-Hernández R; Solís KH; García-Sáinz JA
    Int J Mol Sci; 2023 Nov; 24(23):. PubMed ID: 38069285
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Relations between cerebral noradrenaline levels and mortality during acoustic epilepsy attacks in mice].
    Lehamnn A
    J Physiol (Paris); 1965; 57(5):646. PubMed ID: 5849891
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.