These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

326 related articles for article (PubMed ID: 10767082)

  • 1. Xenopus laevis gelatinase B (Xmmp-9): development, regeneration, and wound healing.
    Carinato ME; Walter BE; Henry JJ
    Dev Dyn; 2000 Apr; 217(4):377-87. PubMed ID: 10767082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cornea-lens transdifferentiation in the anuran, Xenopus tropicalis.
    Henry JJ; Elkins MB
    Dev Genes Evol; 2001 Sep; 211(8-9):377-87. PubMed ID: 11685571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early regeneration genes: Building a molecular profile for shared expression in cornea-lens transdifferentiation and hindlimb regeneration in Xenopus laevis.
    Wolfe AD; Crimmins G; Cameron JA; Henry JJ
    Dev Dyn; 2004 Aug; 230(4):615-29. PubMed ID: 15254896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing gene expression during lens formation in Xenopus laevis: evaluating the model for embryonic lens induction.
    Henry JJ; Carinato ME; Schaefer JJ; Wolfe AD; Walter BE; Perry KJ; Elbl TN
    Dev Dyn; 2002 Jun; 224(2):168-85. PubMed ID: 12112470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lens regeneration in larval Xenopus laevis: experimental analysis of the decline in the regenerative capacity during development.
    Filoni S; Bernardini S; Cannata SM; D'Alessio A
    Dev Biol; 1997 Jul; 187(1):13-24. PubMed ID: 9224670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular profiling: gene expression reveals discrete phases of lens induction and development in Xenopus laevis.
    Walter BE; Tian Y; Garlisch AK; Carinato ME; Elkins MB; Wolfe AD; Schaefer JJ; Perry KJ; Henry JJ
    Mol Vis; 2004 Mar; 10():186-98. PubMed ID: 15064684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental analysis of lens-forming capacity in Xenopus borealis larvae.
    Filoni S; Bernardini S; Cannata SM
    J Exp Zool A Comp Exp Biol; 2006 Jul; 305(7):538-50. PubMed ID: 16703619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FGF-8 is associated with anteroposterior patterning and limb regeneration in Xenopus.
    Christen B; Slack JM
    Dev Biol; 1997 Dec; 192(2):455-66. PubMed ID: 9441681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond early development: Xenopus as an emerging model for the study of regenerative mechanisms.
    Beck CW; Izpisúa Belmonte JC; Christen B
    Dev Dyn; 2009 Jun; 238(6):1226-48. PubMed ID: 19280606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lens regeneration in Xenopus is not a mere repeat of lens development, with respect to crystallin gene expression.
    Mizuno N; Mochii M; Takahashi TC; Eguchi G; Okada TS
    Differentiation; 1999 Mar; 64(3):143-9. PubMed ID: 10234811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Requirement for betaB1-crystallin promoter of Xenopus laevis in embryonic lens development and lens regeneration.
    Mizuno N; Ueda Y; Kondoh H
    Dev Growth Differ; 2005 Apr; 47(3):131-40. PubMed ID: 15839998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of pluripotency factors in larval epithelia of the frog Xenopus: evidence for the presence of cornea epithelial stem cells.
    Perry KJ; Thomas AG; Henry JJ
    Dev Biol; 2013 Feb; 374(2):281-94. PubMed ID: 23274420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lens formation from the cornea following implantation into hindlimbs of larval Xenopus laevis: the influence of limb innervation and extent of differentiation.
    Filoni S; Albanesi C; Bernardini S; Cannata SM
    J Exp Zool; 1991 Nov; 260(2):220-8. PubMed ID: 1940824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bves is expressed in the epithelial components of the retina, lens, and cornea.
    Ripley AN; Chang MS; Bader DM
    Invest Ophthalmol Vis Sci; 2004 Aug; 45(8):2475-83. PubMed ID: 15277466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retinal pigmented epithelium regenerates the neural retina.
    Yoshii C; Ueda Y; Okamoto M; Araki M
    Dev Biol; 2007 Mar; 303(1):45-56. PubMed ID: 17184765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The matured eye of Xenopus laevis tadpoles produces factors that elicit a lens-forming response in embryonic ectoderm.
    Henry JJ; Mittleman JM
    Dev Biol; 1995 Sep; 171(1):39-50. PubMed ID: 7556906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression of regeneration-associated cytoskeletal proteins reveals differences and similarities between regenerating organs.
    Ferretti P; Ghosh S
    Dev Dyn; 1997 Nov; 210(3):288-304. PubMed ID: 9389454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secondary lens formation from the cornea following implantation of larval tissues between the inner and outer corneas of Xenopus laevis tadpoles.
    Reeve JG; Wild AE
    J Embryol Exp Morphol; 1981 Aug; 64():121-32. PubMed ID: 7031166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Macroarray-based analysis of tail regeneration in Xenopus laevis larvae.
    Tazaki A; Kitayama A; Terasaka C; Watanabe K; Ueno N; Mochii M
    Dev Dyn; 2005 Aug; 233(4):1394-404. PubMed ID: 15977180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression profiles of the duplicated matrix metalloproteinase-9 genes suggest their different roles in apoptosis of larval intestinal epithelial cells during Xenopus laevis metamorphosis.
    Hasebe T; Kajita M; Fujimoto K; Yaoita Y; Ishizuya-Oka A
    Dev Dyn; 2007 Aug; 236(8):2338-45. PubMed ID: 17654707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.