These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 10767439)

  • 1. Computer simulation of sphenopsid architecture. Part II. Calamites multiramis Weiss, as an example of Late Paleozoic arborescent Sphenopsids.
    Daviero V; Lecoustre R
    Rev Palaeobot Palynol; 2000 Apr; 109(2):135-148. PubMed ID: 10767439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computer simulation of sphenopsid architecture. I. Principles and methodology.
    Daviero V; Meyer-Berthaud B; Lecoustre R
    Rev Palaeobot Palynol; 2000 Apr; 109(2):121-134. PubMed ID: 10767438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Record rates of pressurized gas-flow in the great horsetail, Equisetum telmateia. Were Carboniferous Calamites similarly aerated?
    Armstrong J; Armstrong W
    New Phytol; 2009; 184(1):202-215. PubMed ID: 19522841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Discovery of Calamitaceae from the Cisuralian in Northwest China: Morphological Evolution of Strobilus.
    Wang X; Miao Y; Ji Y; Sun B
    Biology (Basel); 2024 May; 13(5):. PubMed ID: 38785829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental programmes in the evolution of Equisetum reproductive morphology: a hierarchical modularity hypothesis.
    Tomescu AM; Escapa IH; Rothwell GW; Elgorriaga A; Cúneo NR
    Ann Bot; 2017 Mar; 119(4):489-505. PubMed ID: 28365757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. "Lycostrobus" chinleana, an equisetalean cone from the Upper Triassic of the southwestern United States and its phylogenetic implications.
    Grauvogel-Stamm L; R Ash S
    Am J Bot; 1999 Oct; 86(10):1391-405. PubMed ID: 10523281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New perspective on the architecture of the Late Devonian arborescent lycopsid Leptophloeum rhombicum (Leptophloeaceae).
    Wang Q; Geng BY; Dilcher DL
    Am J Bot; 2005 Jan; 92(1):83-91. PubMed ID: 21652387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structurally preserved sphenophytes from the Triassic of Antarctica: reproductive remains of Spaciinodum.
    Osborn JM; Phipps CJ; Taylor TN; Taylor EL
    Rev Palaeobot Palynol; 2000 Sep; 111(3-4):225-235. PubMed ID: 11035167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth habit of the late Paleozoic rhizomorphic tree-lycopsid family Diaphorodendraceae: phylogenetic, evolutionary, and paleoecological significance.
    Dimichele WA; Elrick SD; Bateman RM
    Am J Bot; 2013 Aug; 100(8):1604-25. PubMed ID: 23935114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calamitean Cones and Their In Situ Spores from the Pennsylvanian Limnic Basins of the Czech Republic.
    Bek J; Votočková Frojdová J
    Life (Basel); 2024 May; 14(6):. PubMed ID: 38929684
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling primary and secondary growth processes in plants: a summary of the methodology and new data from an early lignophyte.
    Speck T; Rowe NP
    Philos Trans R Soc Lond B Biol Sci; 2003 Sep; 358(1437):1473-85. PubMed ID: 14561338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and Development of Sphenophyllum oblongifolium from the Upper Carboniferous of France.
    Galtier J; Daviero V
    Int J Plant Sci; 1999 Sep; 160(5):1021-1033. PubMed ID: 10506478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of paleozoic chromosomes from lycopod microgametophytes.
    Brack-Hanes SD; Vaughn JC
    Science; 1978 Jun; 200(4348):1383-5. PubMed ID: 17736322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Origin and evolution of insect wings and their relation to metamorphosis, as documented by the fossil record.
    Kukalova-Peck J
    J Morphol; 1978 Apr; 156(1):53-125. PubMed ID: 30231597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and ecological implications of dormant buds in the high-Paleolaltitude Triassic sphenophyte Spaciinodum (Equisetaceae).
    Ryberg PE; Hermsen EJ; Taylor EL; Taylor TN; Osborn JM
    Am J Bot; 2008 Nov; 95(11):1443-53. PubMed ID: 21628152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reproductive and vegetative organs with affinities to Haloragaceae from the Upper Cretaceous Huepac Chert Locality of Sonora, Mexico.
    Hernández-Castillo GR; Cevallos-Ferriz SR
    Am J Bot; 1999 Dec; 86(12):1717-34. PubMed ID: 10602765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of male and female cones on assimilate production of Pinus contorta trees within a forest stand.
    Dick JM; Jarvis PG; Barton CV
    Tree Physiol; 1990 Dec; 7(1_2_3_4):49-63. PubMed ID: 14972905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Ontogeny of strobili, sporangia development and sporogenesis in Equisetum giganteum (Equisetaceae) from the Colombian Andes].
    Rincón Barón EJ; Forero Ballesteros HG; Gélvez Landazábal LV; Andrés Torres G; Hilda Rolleri C
    Rev Biol Trop; 2011 Dec; 59(4):1845-58. PubMed ID: 22208097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compound pollen cone in a Paleozoic conifer.
    Hernandez-Castillo GR; Rothwell GW; Mapes G
    Am J Bot; 2001 Jun; 88(6):1139-42. PubMed ID: 11410479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of male cones on early season vegetative growth of Pinus contorta trees.
    Dick JM; Jarvis PG; Leakey RR
    Tree Physiol; 1990 Mar; 6(1):105-17. PubMed ID: 14972965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.