These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 10767762)
1. Low-mass ions observed in plasma desorption mass spectrometry of high explosives. Hakansson K; Coorey RV; Zubarev RA; Talrose VL; Hakansson P J Mass Spectrom; 2000 Mar; 35(3):337-46. PubMed ID: 10767762 [TBL] [Abstract][Full Text] [Related]
2. Enhancement of the molecular ion yield in plasma desorption mass spectrometry using explosive matrices. Zubarev RA; Håkansson P; Sundqvist B; Talrose VL Rapid Commun Mass Spectrom; 1997; 11(1):63-70. PubMed ID: 9050261 [TBL] [Abstract][Full Text] [Related]
3. Interaction between explosive and analyte layers in explosive matrix-assisted plasma desorption mass spectrometry. Håkansson K; Zubarev RA; Coorey RV; Talrose VL; Håkansson P Rapid Commun Mass Spectrom; 1999 Jun; 13(12):1169-1174. PubMed ID: 10407293 [TBL] [Abstract][Full Text] [Related]
4. Desorption electrospray ionization of explosives on surfaces: sensitivity and selectivity enhancement by reactive desorption electrospray ionization. Cotte-Rodríguez I; Takáts Z; Talaty N; Chen H; Cooks RG Anal Chem; 2005 Nov; 77(21):6755-64. PubMed ID: 16255571 [TBL] [Abstract][Full Text] [Related]
5. Direct detection of explosives on solid surfaces by mass spectrometry with an ambient ion source based on dielectric barrier discharge. Na N; Zhang C; Zhao M; Zhang S; Yang C; Fang X; Zhang X J Mass Spectrom; 2007 Aug; 42(8):1079-85. PubMed ID: 17618527 [TBL] [Abstract][Full Text] [Related]
6. Detection of explosives and related compounds by low-temperature plasma ambient ionization mass spectrometry. Garcia-Reyes JF; Harper JD; Salazar GA; Charipar NA; Ouyang Z; Cooks RG Anal Chem; 2011 Feb; 83(3):1084-92. PubMed ID: 21174437 [TBL] [Abstract][Full Text] [Related]
7. Direct detection of explosives on solid surfaces by low temperature plasma desorption mass spectrometry. Zhang Y; Ma X; Zhang S; Yang C; Ouyang Z; Zhang X Analyst; 2009 Jan; 134(1):176-81. PubMed ID: 19082190 [TBL] [Abstract][Full Text] [Related]
8. Detection of explosives on skin using ambient ionization mass spectrometry. Justes DR; Talaty N; Cotte-Rodriguez I; Cooks RG Chem Commun (Camb); 2007 Jun; (21):2142-4. PubMed ID: 17520116 [TBL] [Abstract][Full Text] [Related]
9. Identification of high explosives using single-particle aerosol mass spectrometry. Martin AN; Farquar GR; Gard EE; Frank M; Fergenson DP Anal Chem; 2007 Mar; 79(5):1918-25. PubMed ID: 17249636 [TBL] [Abstract][Full Text] [Related]
10. Gas phase ion chemistry of an ion mobility spectrometry based explosive trace detector elucidated by tandem mass spectrometry. Kozole J; Levine LA; Tomlinson-Phillips J; Stairs JR Talanta; 2015 Aug; 140():10-19. PubMed ID: 26048817 [TBL] [Abstract][Full Text] [Related]
11. Fabric analysis by ambient mass spectrometry for explosives and drugs. Talaty N; Mulligan CC; Justes DR; Jackson AU; Noll RJ; Cooks RG Analyst; 2008 Nov; 133(11):1532-40. PubMed ID: 18936830 [TBL] [Abstract][Full Text] [Related]
12. Comparing solid phase extraction and direct injection for the analysis of ultra-trace levels of relevant explosives in lake water and tributaries using liquid chromatography-electrospray tandem mass spectrometry. Ochsenbein U; Zeh M; Berset JD Chemosphere; 2008 Jun; 72(6):974-80. PubMed ID: 18472128 [TBL] [Abstract][Full Text] [Related]
13. Theoretical studies of energy transfer rates of secondary explosives. Ye S; Koshi M J Phys Chem B; 2006 Sep; 110(37):18515-20. PubMed ID: 16970479 [TBL] [Abstract][Full Text] [Related]
14. Characterization of RDX and HMX explosive adduct ions using ESI FT-ICR MS. Lee J; Kim MS; Kim HS; Choe YK; Cho SG; Goh EM; Kim J J Mass Spectrom; 2020 Jul; 56(4):e4632. PubMed ID: 32767485 [TBL] [Abstract][Full Text] [Related]
15. Detection of explosives as negative ions directly from surfaces using a miniature mass spectrometer. Sanders NL; Kothari S; Huang G; Salazar G; Cooks RG Anal Chem; 2010 Jun; 82(12):5313-6. PubMed ID: 20496904 [TBL] [Abstract][Full Text] [Related]
16. Rapid identification and desorption mechanisms of nitrogen-based explosives by ambient micro-fabricated glow discharge plasma desorption/ionization (MFGDP) mass spectrometry. Tian C; Yin J; Zhao Z; Zhang Y; Duan Y Talanta; 2017 May; 167():75-85. PubMed ID: 28340788 [TBL] [Abstract][Full Text] [Related]
17. Generation of highly charged peptide and protein ions by atmospheric pressure matrix-assisted infrared laser desorption/ionization ion trap mass spectrometry. König S; Kollas O; Dreisewerd K Anal Chem; 2007 Jul; 79(14):5484-8. PubMed ID: 17569505 [TBL] [Abstract][Full Text] [Related]
18. Reactive molecular dynamics simulation of thermal decomposition for nano-aluminized explosives. Mei Z; An Q; Zhao FQ; Xu SY; Ju XH Phys Chem Chem Phys; 2018 Nov; 20(46):29341-29350. PubMed ID: 30444501 [TBL] [Abstract][Full Text] [Related]
19. Particle characteristics of trace high explosives: RDX and PETN. Verkouteren JR J Forensic Sci; 2007 Mar; 52(2):335-40. PubMed ID: 17316229 [TBL] [Abstract][Full Text] [Related]
20. TNT, RDX, and HMX decrease earthworm (Eisenia andrei) life-cycle responses in a spiked natural forest soil. Robidoux PY; Hawari J; Bardai G; Paquet L; Ampleman G; Thiboutot S; Sunahara GI Arch Environ Contam Toxicol; 2002 Nov; 43(4):379-88. PubMed ID: 12399908 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]