These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10768111)

  • 1. [Standardized measurement of sound transmission of different middle ear prostheses].
    Meister H; Mickenhagen A; Walger M; Dück M; von Wedel H; Stennert E
    HNO; 2000 Mar; 48(3):204-8. PubMed ID: 10768111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Measuring vibration properties of middle ear implants with the mechanical middle ear model. Initial results].
    Meister H; Walger M; Mickenhagen A; Stennert E
    HNO; 1998 Mar; 46(3):241-5. PubMed ID: 9583029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [A registration system for evaluating acusto-mechanical transmission of middle ear implants].
    Meister H; Stennert E; Walger M; Klünter HD; Mickenhagen A
    HNO; 1997 Feb; 45(2):81-5. PubMed ID: 9173074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Standardized measurements of the sound transmission of middle ear implants using a mechanical middle ear model.
    Meister H; Walger M; Mickenhagen A; von Wedel H; Stennert E
    Eur Arch Otorhinolaryngol; 1999; 256(3):122-7. PubMed ID: 10234479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibroplasty combined with tympanic membrane reconstruction in middle ear ventilation disorders.
    Müller C; Zahnert T; Ossmann S; Neudert M; Bornitz M
    Hear Res; 2019 Jul; 378():166-175. PubMed ID: 30878272
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 3D-printed functioning anatomical human middle ear model.
    Kuru I; Maier H; Müller M; Lenarz T; Lueth TC
    Hear Res; 2016 Oct; 340():204-213. PubMed ID: 26772730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Laser vibrometry. A middle ear and cochlear analyzer for noninvasive studies of middle and inner ear function disorders].
    Rodriguez Jorge J; Zenner HP; Hemmert W; Burkhardt C; Gummer AW
    HNO; 1997 Dec; 45(12):997-1007. PubMed ID: 9486381
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of prosthesis design on vibration of the reconstructed ossicular chain: a comparative finite element analysis of four prostheses.
    Kelly DJ; Prendergast PJ; Blayney AW
    Otol Neurotol; 2003 Jan; 24(1):11-9. PubMed ID: 12544021
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restoring hearing using total ossicular replacement prostheses--analysis of 3D finite element model.
    Yao W; Li B; Huang X; Guo C; Luo X; Zhou W; Duan M
    Acta Otolaryngol; 2012 Feb; 132(2):152-9. PubMed ID: 22201262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ear canal pressure variations versus negative middle ear pressure: comparison using distortion product otoacoustic emission measurement in humans.
    Sun XM
    Ear Hear; 2012; 33(1):69-78. PubMed ID: 21747284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental study of an adjustable-length prosthesis in a temporal bone model.
    Zhao S; Hato N; Goode RL
    Acta Otolaryngol; 2005 Jan; 125(1):33-7. PubMed ID: 15799571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of Prosthesis Length on Tympanic Membrane's and Annular Ligament's Stiffness and the Resulting Middle Ear Sound Transmission.
    Neudert M; Bornitz M; Lasurashvili N; Schmidt U; Beleites T; Zahnert T
    Otol Neurotol; 2016 Oct; 37(9):e369-76. PubMed ID: 27631661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of static force on round window stimulation with the direct acoustic cochlea stimulator.
    Maier H; Salcher R; Schwab B; Lenarz T
    Hear Res; 2013 Jul; 301():115-24. PubMed ID: 23276731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Establishment of mechanical middle ear model and the study of the acoustic characteristics of different ossicular prostheses].
    Zhang GP; Cu T; Wu AX; Li YQ
    Zhonghua Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2007 Feb; 42(2):130-4. PubMed ID: 17633257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparative study of MED-EL FMT attachment to the long process of the incus in intact middle ears and its attachment to disarticulated stapes head.
    Chen T; Ren LJ; Yin DM; Li J; Yang L; Dai PD; Zhang TY
    Hear Res; 2017 Sep; 353():97-103. PubMed ID: 28666703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Studies of sound condition in the reconstructed middle ear with a hydrophone. Initial results].
    Hüttenbrink KB; Hudde H
    HNO; 1994 Jan; 42(1):49-57. PubMed ID: 8150674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustomechanical properties of open TTP titanium middle ear prostheses.
    Zenner HP; Freitag HG; Linti C; Steinhardt U; Rodriguez Jorge J; Preyer S; Mauz PS; Sürth M; Planck H; Baumann I; Lehner R; Eiber A
    Hear Res; 2004 Jun; 192(1-2):36-46. PubMed ID: 15157961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Experimental investigations on middle ear prostheses with an integrated micro joint].
    Beleites T; Bornitz M; Offergeld C; Neudert M; Hüttenbrink KB; Zahnert T
    Laryngorhinootologie; 2007 Sep; 86(9):649-54. PubMed ID: 17538859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How does prosthesis head size affect vibration transmission in ossiculoplasty?
    Bance M; Campos A; Wong L; Morris DP; van Wijhe R
    Otolaryngol Head Neck Surg; 2007 Jul; 137(1):70-3. PubMed ID: 17599568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental study of the acoustic properties of incus replacement prostheses in a human temporal bone model.
    Nishihara S; Goode RL
    Am J Otol; 1994 Jul; 15(4):485-94. PubMed ID: 8588603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.