These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 10768382)
1. The interaction of biological molecules with clay minerals: a scanning force microscopy study. Porter TL; Eastman MP; Whitehorse R; Bain E; Manygoats K Scanning; 2000; 22(1):1-5. PubMed ID: 10768382 [TBL] [Abstract][Full Text] [Related]
2. Site-specific prebiotic oligomerization reactions of glycine on the surface of hectorite. Porter TL; Eastman MP; Hagerman ME; Price LB; Shand RF J Mol Evol; 1998 Oct; 47(4):373-7. PubMed ID: 9767682 [TBL] [Abstract][Full Text] [Related]
3. Mineral surface chemistry control for origin of prebiotic peptides. Erastova V; Degiacomi MT; G Fraser D; Greenwell HC Nat Commun; 2017 Dec; 8(1):2033. PubMed ID: 29229963 [TBL] [Abstract][Full Text] [Related]
4. Formation of replicating saponite from a gel in the presence of oxalate: implications for the formation of clay minerals in carbonaceous chondrites and the origin of life. Schumann D; Hartman H; Eberl DD; Sears SK; Hesse R; Vali H Astrobiology; 2012 Jun; 12(6):549-61. PubMed ID: 22794298 [TBL] [Abstract][Full Text] [Related]
5. Theoretical investigation of the role of clay edges in prebiotic peptide bond formation. I. Structures of acetic acid, glycine, H2SO4, H3PO4, Si(OH)4, Al(OH)4-. Luke BT; Gupta AG; Loew GH; Lawless JG; White DH Int J Quantum Chem Quantum Biol Symp; 1984; 11():117-35. PubMed ID: 11540814 [TBL] [Abstract][Full Text] [Related]
6. A possible role of fluctuating clay-water systems in the production of ordered prebiotic oligomers. Lahav N; White DH J Mol Evol; 1980 Sep; 16(1):11-21. PubMed ID: 7441778 [TBL] [Abstract][Full Text] [Related]
7. The combination of salt induced peptide formation reaction and clay catalysis: a way to higher peptides under primitive earth conditions. Rode BM; Son HL; Suwannachot Y Orig Life Evol Biosph; 1999 May; 29(3):273-86. PubMed ID: 10465717 [TBL] [Abstract][Full Text] [Related]
9. Understanding the role of clay minerals in the chromium(VI) bioremoval by Pseudomonas aeruginosa CCTCC AB93066 under growth condition: microscopic, spectroscopic and kinetic analysis. Kang C; Wu P; Li Y; Ruan B; Li L; Tran L; Zhu N; Dang Z World J Microbiol Biotechnol; 2015 Nov; 31(11):1765-79. PubMed ID: 26296415 [TBL] [Abstract][Full Text] [Related]
10. Cations as mediators of the adsorption of nucleic acids on clay surfaces in prebiotic environments. Franchi M; Ferris JP; Gallori E Orig Life Evol Biosph; 2003 Feb; 33(1):1-16. PubMed ID: 12967270 [TBL] [Abstract][Full Text] [Related]
11. Impacts of Pantoea agglomerans strain and cation-modified clay minerals on the adsorption and biodegradation of phenanthrene. Tao K; Zhao S; Gao P; Wang L; Jia H Ecotoxicol Environ Saf; 2018 Oct; 161():237-244. PubMed ID: 29886310 [TBL] [Abstract][Full Text] [Related]
12. Modeling the clay minerals-enzyme binding by fusion fluorescent proteins and under atomic force microscope. Math RK; Reddy S; Dae Yun H; Kambiranda D; Ghebreiyessus Y Microsc Res Tech; 2019 Jun; 82(6):884-891. PubMed ID: 30775836 [TBL] [Abstract][Full Text] [Related]
13. Heterogeneous decomposition of CHF2OCH2CF3 and CHF2OCH2C2F5 over various standard aluminosilica clay minerals in air at 313 K. Kutsuna S; Chen L; Nohara K; Takeuchi K; Ibusuki T Environ Sci Technol; 2002 Jul; 36(14):3118-23. PubMed ID: 12141493 [TBL] [Abstract][Full Text] [Related]
14. Probing surface charge potentials of clay basal planes and edges by direct force measurements. Zhao H; Bhattacharjee S; Chow R; Wallace D; Masliyah JH; Xu Z Langmuir; 2008 Nov; 24(22):12899-910. PubMed ID: 18925764 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of long prebiotic oligomers on mineral surfaces. Ferris JP; Hill AR; Liu R; Orgel LE Nature; 1996 May; 381(6577):59-61. PubMed ID: 8609988 [TBL] [Abstract][Full Text] [Related]
17. Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions. Chen C; Dynes JJ; Wang J; Karunakaran C; Sparks DL Environ Sci Technol; 2014 Jun; 48(12):6678-86. PubMed ID: 24837340 [TBL] [Abstract][Full Text] [Related]
18. Selective adsorption and chiral amplification of amino acids in vermiculite clay-implications for the origin of biochirality. Fraser DG; Fitz D; Jakschitz T; Rode BM Phys Chem Chem Phys; 2011 Jan; 13(3):831-8. PubMed ID: 21031170 [TBL] [Abstract][Full Text] [Related]
19. Adsorption of amino acids at clay surfaces and implication for biochemical reactions: Role and impact of surface charges. Zhu C; Wang Q; Huang X; Yun J; Hu Q; Yang G Colloids Surf B Biointerfaces; 2019 Nov; 183():110458. PubMed ID: 31472392 [TBL] [Abstract][Full Text] [Related]
20. Sorption of Cu by humic acid from the decomposition of rice straw in the absence and presence of clay minerals. Qi Y; Zhu J; Fu Q; Hu H; Huang Q J Environ Manage; 2017 Sep; 200():304-311. PubMed ID: 28586734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]